Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -26,7 +26,7 @@ except Exception as e:
|
|
26 |
data.columns = data.columns.str.strip().str.lower()
|
27 |
logger.info(f"Standardized Column Names: {data.columns.tolist()}")
|
28 |
|
29 |
-
# Filter out
|
30 |
data = data[data.industry != 'Health']
|
31 |
|
32 |
# Identify the valuation column
|
@@ -39,70 +39,321 @@ valuation_column = valuation_columns[0]
|
|
39 |
logger.info(f"Using valuation column: {valuation_column}")
|
40 |
|
41 |
# Clean and prepare data
|
42 |
-
data["
|
43 |
-
|
44 |
-
)
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
)
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
86 |
)
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
)
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
gr.
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
data.columns = data.columns.str.strip().str.lower()
|
27 |
logger.info(f"Standardized Column Names: {data.columns.tolist()}")
|
28 |
|
29 |
+
# Filter out Health since Healthcare is the correct Market Segment
|
30 |
data = data[data.industry != 'Health']
|
31 |
|
32 |
# Identify the valuation column
|
|
|
39 |
logger.info(f"Using valuation column: {valuation_column}")
|
40 |
|
41 |
# Clean and prepare data
|
42 |
+
data["Valuation_Billions"] = data[valuation_column].replace({'\$': '', ',': ''}, regex=True)
|
43 |
+
data["Valuation_Billions"] = pd.to_numeric(data["Valuation_Billions"], errors='coerce')
|
44 |
+
data = data.apply(lambda col: col.str.strip() if col.dtype == "object" else col)
|
45 |
+
data.rename(columns={
|
46 |
+
"company": "Company",
|
47 |
+
"date_joined": "Date_Joined",
|
48 |
+
"country": "Country",
|
49 |
+
"city": "City",
|
50 |
+
"industry": "Industry",
|
51 |
+
"select_investors": "Select_Investors"
|
52 |
+
}, inplace=True)
|
53 |
+
|
54 |
+
logger.info("Data cleaned and columns renamed.")
|
55 |
+
|
56 |
+
# Build investor-company mapping
|
57 |
+
def build_investor_company_mapping(df):
|
58 |
+
mapping = {}
|
59 |
+
for _, row in df.iterrows():
|
60 |
+
company = row["Company"]
|
61 |
+
investors = row["Select_Investors"]
|
62 |
+
if pd.notnull(investors):
|
63 |
+
for investor in investors.split(","):
|
64 |
+
investor = investor.strip()
|
65 |
+
if investor:
|
66 |
+
mapping.setdefault(investor, []).append(company)
|
67 |
+
return mapping
|
68 |
+
|
69 |
+
investor_company_mapping = build_investor_company_mapping(data)
|
70 |
+
logger.info("Investor to company mapping created.")
|
71 |
+
|
72 |
+
|
73 |
+
# -------------------------
|
74 |
+
# Valuation-Range Logic
|
75 |
+
# -------------------------
|
76 |
+
def filter_by_valuation_range(df, selected_valuation_range):
|
77 |
+
"""Filter dataframe by the specified valuation range in billions."""
|
78 |
+
if selected_valuation_range == "All":
|
79 |
+
return df # No further filtering
|
80 |
+
|
81 |
+
if selected_valuation_range == "1-5":
|
82 |
+
return df[(df["Valuation_Billions"] >= 1) & (df["Valuation_Billions"] < 5)]
|
83 |
+
elif selected_valuation_range == "5-10":
|
84 |
+
return df[(df["Valuation_Billions"] >= 5) & (df["Valuation_Billions"] < 10)]
|
85 |
+
elif selected_valuation_range == "10-15":
|
86 |
+
return df[(df["Valuation_Billions"] >= 10) & (df["Valuation_Billions"] < 15)]
|
87 |
+
elif selected_valuation_range == "15-20":
|
88 |
+
return df[(df["Valuation_Billions"] >= 15) & (df["Valuation_Billions"] < 20)]
|
89 |
+
elif selected_valuation_range == "20+":
|
90 |
+
return df[df["Valuation_Billions"] >= 20]
|
91 |
+
else:
|
92 |
+
return df # Fallback, should never happen
|
93 |
+
|
94 |
+
|
95 |
+
# Filter investors by country, industry, investor selection, company selection, and valuation range
|
96 |
+
def filter_investors(
|
97 |
+
selected_country,
|
98 |
+
selected_industry,
|
99 |
+
selected_investors,
|
100 |
+
selected_company,
|
101 |
+
exclude_countries,
|
102 |
+
exclude_industries,
|
103 |
+
exclude_companies,
|
104 |
+
exclude_investors,
|
105 |
+
selected_valuation_range
|
106 |
+
):
|
107 |
+
filtered_data = data.copy()
|
108 |
+
|
109 |
+
# 1) Valuation range filter
|
110 |
+
filtered_data = filter_by_valuation_range(filtered_data, selected_valuation_range)
|
111 |
+
|
112 |
+
# 2) Now apply the existing filters:
|
113 |
+
|
114 |
+
# Inclusion filters
|
115 |
+
if selected_country != "All":
|
116 |
+
filtered_data = filtered_data[filtered_data["Country"] == selected_country]
|
117 |
+
if selected_industry != "All":
|
118 |
+
filtered_data = filtered_data[filtered_data["Industry"] == selected_industry]
|
119 |
+
if selected_company != "All":
|
120 |
+
filtered_data = filtered_data[filtered_data["Company"] == selected_company]
|
121 |
+
if selected_investors:
|
122 |
+
pattern = '|'.join([re.escape(inv) for inv in selected_investors])
|
123 |
+
filtered_data = filtered_data[filtered_data["Select_Investors"].str.contains(pattern, na=False)]
|
124 |
+
|
125 |
+
# Exclusion filters
|
126 |
+
if exclude_countries:
|
127 |
+
filtered_data = filtered_data[~filtered_data["Country"].isin(exclude_countries)]
|
128 |
+
if exclude_industries:
|
129 |
+
filtered_data = filtered_data[~filtered_data["Industry"].isin(exclude_industries)]
|
130 |
+
if exclude_companies:
|
131 |
+
filtered_data = filtered_data[~filtered_data["Company"].isin(exclude_companies)]
|
132 |
+
if exclude_investors:
|
133 |
+
pattern = '|'.join([re.escape(inv) for inv in exclude_investors])
|
134 |
+
filtered_data = filtered_data[~filtered_data["Select_Investors"].str.contains(pattern, na=False)]
|
135 |
+
|
136 |
+
investor_company_mapping_filtered = build_investor_company_mapping(filtered_data)
|
137 |
+
filtered_investors = list(investor_company_mapping_filtered.keys())
|
138 |
+
return filtered_investors, filtered_data
|
139 |
+
|
140 |
+
|
141 |
+
# Generate Plotly graph
|
142 |
+
# NEW: We add selected_valuation_range so we can check if the user selected 15-20 or 20+
|
143 |
+
def generate_graph(investors, filtered_data, selected_valuation_range):
|
144 |
+
if not investors:
|
145 |
+
logger.warning("No investors selected.")
|
146 |
+
return go.Figure()
|
147 |
+
|
148 |
+
# Create a color map for investors
|
149 |
+
unique_investors = investors
|
150 |
+
num_colors = len(unique_investors)
|
151 |
+
color_palette = [
|
152 |
+
"#377eb8", "#e41a1c", "#4daf4a", "#984ea3",
|
153 |
+
"#ff7f00", "#ffff33", "#a65628", "#f781bf", "#999999"
|
154 |
+
]
|
155 |
+
while num_colors > len(color_palette):
|
156 |
+
color_palette.extend(color_palette)
|
157 |
+
|
158 |
+
investor_color_map = {investor: color_palette[i] for i, investor in enumerate(unique_investors)}
|
159 |
+
|
160 |
+
G = nx.Graph()
|
161 |
+
for investor in investors:
|
162 |
+
companies = filtered_data[filtered_data["Select_Investors"].str.contains(re.escape(investor), na=False)]["Company"].tolist()
|
163 |
+
for company in companies:
|
164 |
+
G.add_node(company)
|
165 |
+
G.add_node(investor)
|
166 |
+
G.add_edge(investor, company)
|
167 |
+
|
168 |
+
pos = nx.spring_layout(G, seed=42)
|
169 |
+
edge_x, edge_y = [], []
|
170 |
+
|
171 |
+
for edge in G.edges():
|
172 |
+
x0, y0 = pos[edge[0]]
|
173 |
+
x1, y1 = pos[edge[1]]
|
174 |
+
edge_x.extend([x0, x1, None])
|
175 |
+
edge_y.extend([y0, y1, None])
|
176 |
+
|
177 |
+
edge_trace = go.Scatter(
|
178 |
+
x=edge_x,
|
179 |
+
y=edge_y,
|
180 |
+
line=dict(width=0.5, color='#aaaaaa'),
|
181 |
+
hoverinfo='none',
|
182 |
+
mode='lines'
|
183 |
+
)
|
184 |
+
|
185 |
+
node_x, node_y, node_text, node_textposition = [], [], [], []
|
186 |
+
node_color, node_size, node_hovertext = [], [], []
|
187 |
+
|
188 |
+
for node in G.nodes():
|
189 |
+
x, y = pos[node]
|
190 |
+
node_x.append(x)
|
191 |
+
node_y.append(y)
|
192 |
+
if node in investors:
|
193 |
+
node_text.append(node) # Add investor labels
|
194 |
+
node_color.append(investor_color_map[node])
|
195 |
+
node_size.append(30)
|
196 |
+
node_hovertext.append(f"Investor: {node}")
|
197 |
+
node_textposition.append('top center')
|
198 |
+
else:
|
199 |
+
valuation = filtered_data.loc[filtered_data["Company"] == node, "Valuation_Billions"].values
|
200 |
+
industry = filtered_data.loc[filtered_data["Company"] == node, "Industry"].values
|
201 |
+
size = valuation[0] * 5 if len(valuation) > 0 and not pd.isnull(valuation[0]) else 15
|
202 |
+
node_size.append(max(size, 10))
|
203 |
+
node_color.append("#a6d854")
|
204 |
+
|
205 |
+
# Build the hover label text
|
206 |
+
hovertext = f"Company: {node}"
|
207 |
+
if len(industry) > 0 and not pd.isnull(industry[0]):
|
208 |
+
hovertext += f"<br>Industry: {industry[0]}"
|
209 |
+
if len(valuation) > 0 and not pd.isnull(valuation[0]):
|
210 |
+
hovertext += f"<br>Valuation: ${valuation[0]:.2f}B"
|
211 |
+
node_hovertext.append(hovertext)
|
212 |
+
|
213 |
+
# NEW: If valuation range is 15–20 or 20+, show hovertext for all companies
|
214 |
+
if selected_valuation_range in ["15-20", "20+"]:
|
215 |
+
node_text.append(hovertext) # show full text
|
216 |
+
node_textposition.append('bottom center')
|
217 |
+
else:
|
218 |
+
# Old logic: only show the company name in certain conditions
|
219 |
+
if (
|
220 |
+
(len(valuation) > 0 and valuation[0] is not None and valuation[0] > 10) # Check if > 10B
|
221 |
+
or (len(filtered_data) < 15)
|
222 |
+
or (node in filtered_data.nlargest(5, "Valuation_Billions")["Company"].tolist())
|
223 |
+
):
|
224 |
+
node_text.append(node) # Show just the company name
|
225 |
+
node_textposition.append('bottom center')
|
226 |
+
else:
|
227 |
+
node_text.append("") # Hide company label
|
228 |
+
node_textposition.append('bottom center')
|
229 |
+
|
230 |
+
node_trace = go.Scatter(
|
231 |
+
x=node_x,
|
232 |
+
y=node_y,
|
233 |
+
text=node_text,
|
234 |
+
textposition=node_textposition,
|
235 |
+
mode='markers+text',
|
236 |
+
hoverinfo='text',
|
237 |
+
hovertext=node_hovertext,
|
238 |
+
textfont=dict(size=13), # Adjust label font size
|
239 |
+
marker=dict(
|
240 |
+
showscale=False,
|
241 |
+
size=node_size,
|
242 |
+
color=node_color,
|
243 |
+
line=dict(width=0.5, color='#333333')
|
244 |
+
)
|
245 |
+
)
|
246 |
+
|
247 |
+
# Compute total market cap
|
248 |
+
total_market_cap = filtered_data["Valuation_Billions"].sum()
|
249 |
+
|
250 |
+
fig = go.Figure(data=[edge_trace, node_trace])
|
251 |
+
|
252 |
+
fig.update_layout(
|
253 |
+
title="",
|
254 |
+
titlefont_size=28,
|
255 |
+
margin=dict(l=20, r=20, t=60, b=20),
|
256 |
+
hovermode='closest',
|
257 |
+
width=1200,
|
258 |
+
height=800,
|
259 |
+
autosize=True,
|
260 |
+
xaxis=dict(showgrid=False, zeroline=False, visible=False),
|
261 |
+
yaxis=dict(showgrid=False, zeroline=False, visible=False),
|
262 |
+
showlegend=False, # Hide the legend to maximize space
|
263 |
+
annotations=[
|
264 |
+
dict(
|
265 |
+
x=0.5, y=1.1, xref='paper', yref='paper',
|
266 |
+
text=f"Combined Market Cap: ${total_market_cap:.1f} Billions",
|
267 |
+
showarrow=False, font=dict(size=14), xanchor='center'
|
268 |
+
)
|
269 |
+
]
|
270 |
)
|
271 |
|
272 |
+
return fig
|
273 |
+
|
274 |
+
|
275 |
+
# Gradio app function
|
276 |
+
def app(
|
277 |
+
selected_country,
|
278 |
+
selected_industry,
|
279 |
+
selected_company,
|
280 |
+
selected_investors,
|
281 |
+
exclude_countries,
|
282 |
+
exclude_industries,
|
283 |
+
exclude_companies,
|
284 |
+
exclude_investors,
|
285 |
+
selected_valuation_range
|
286 |
+
):
|
287 |
+
investors, filtered_data = filter_investors(
|
288 |
+
selected_country,
|
289 |
+
selected_industry,
|
290 |
+
selected_investors,
|
291 |
+
selected_company,
|
292 |
+
exclude_countries,
|
293 |
+
exclude_industries,
|
294 |
+
exclude_companies,
|
295 |
+
exclude_investors,
|
296 |
+
selected_valuation_range
|
297 |
)
|
298 |
+
if not investors:
|
299 |
+
return go.Figure()
|
300 |
+
# NEW: Pass valuation_range to generate_graph
|
301 |
+
graph = generate_graph(investors, filtered_data, selected_valuation_range)
|
302 |
+
return graph
|
303 |
+
|
304 |
+
|
305 |
+
def main():
|
306 |
+
country_list = ["All"] + sorted(data["Country"].dropna().unique())
|
307 |
+
industry_list = ["All"] + sorted(data["Industry"].dropna().unique())
|
308 |
+
company_list = ["All"] + sorted(data["Company"].dropna().unique())
|
309 |
+
investor_list = sorted(investor_company_mapping.keys())
|
310 |
+
|
311 |
+
# Valuation range choices
|
312 |
+
valuation_ranges = ["All", "1-5", "5-10", "10-15", "15-20", "20+"]
|
313 |
+
|
314 |
+
with gr.Blocks(title="Venture Networks Visualization") as demo:
|
315 |
+
gr.Markdown("# Venture Networks Visualization")
|
316 |
+
|
317 |
+
with gr.Row():
|
318 |
+
country_filter = gr.Dropdown(choices=country_list, label="Country", value="All")
|
319 |
+
industry_filter = gr.Dropdown(choices=industry_list, label="Industry", value="All")
|
320 |
+
company_filter = gr.Dropdown(choices=company_list, label="Company", value="All")
|
321 |
+
investor_filter = gr.Dropdown(choices=investor_list, label="Select Investors", value=[], multiselect=True)
|
322 |
+
|
323 |
+
with gr.Row():
|
324 |
+
valuation_range_filter = gr.Dropdown(
|
325 |
+
choices=valuation_ranges,
|
326 |
+
label="Valuation Range (Billions)",
|
327 |
+
value="All"
|
328 |
+
)
|
329 |
+
exclude_country_filter = gr.Dropdown(choices=country_list[1:], label="Exclude Country", value=[], multiselect=True)
|
330 |
+
exclude_industry_filter = gr.Dropdown(choices=industry_list[1:], label="Exclude Industry", value=[], multiselect=True)
|
331 |
+
exclude_company_filter = gr.Dropdown(choices=company_list[1:], label="Exclude Company", value=[], multiselect=True)
|
332 |
+
exclude_investor_filter = gr.Dropdown(choices=investor_list, label="Exclude Investors", value=[], multiselect=True)
|
333 |
+
|
334 |
+
graph_output = gr.Plot(label="Network Graph")
|
335 |
+
|
336 |
+
inputs = [
|
337 |
+
country_filter,
|
338 |
+
industry_filter,
|
339 |
+
company_filter,
|
340 |
+
investor_filter,
|
341 |
+
exclude_country_filter,
|
342 |
+
exclude_industry_filter,
|
343 |
+
exclude_company_filter,
|
344 |
+
exclude_investor_filter,
|
345 |
+
valuation_range_filter
|
346 |
+
]
|
347 |
+
outputs = [graph_output]
|
348 |
+
|
349 |
+
# Set up event triggers for all inputs
|
350 |
+
for input_control in inputs:
|
351 |
+
input_control.change(app, inputs, outputs)
|
352 |
+
|
353 |
+
gr.Markdown("**Instructions:** Use the dropdowns to filter the network graph. For valuation ranges 15–20 or 20+, you’ll see each company's info label without hovering.")
|
354 |
+
|
355 |
+
demo.launch()
|
356 |
+
|
357 |
+
|
358 |
+
if __name__ == "__main__":
|
359 |
+
main()
|