Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,266 +1,144 @@
|
|
1 |
-
import pandas as pd
|
2 |
import networkx as nx
|
3 |
-
import
|
4 |
import gradio as gr
|
5 |
-
import
|
6 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
# Set up logging
|
9 |
-
logging.basicConfig(level=logging.INFO)
|
10 |
-
logger = logging.getLogger(__name__)
|
11 |
-
|
12 |
-
# Load and preprocess the dataset
|
13 |
-
file_path = "cbinsights_data.csv" # Replace with your actual file path
|
14 |
-
|
15 |
-
try:
|
16 |
-
data = pd.read_csv(file_path, skiprows=1)
|
17 |
-
logger.info("CSV file loaded successfully.")
|
18 |
-
except FileNotFoundError:
|
19 |
-
logger.error(f"File not found: {file_path}")
|
20 |
-
raise
|
21 |
-
except Exception as e:
|
22 |
-
logger.error(f"Error loading CSV file: {e}")
|
23 |
-
raise
|
24 |
-
|
25 |
-
# Standardize column names
|
26 |
-
data.columns = data.columns.str.strip().str.lower()
|
27 |
-
logger.info(f"Standardized Column Names: {data.columns.tolist()}")
|
28 |
-
|
29 |
-
# Identify the valuation column
|
30 |
-
valuation_columns = [col for col in data.columns if 'valuation' in col.lower()]
|
31 |
-
if len(valuation_columns) != 1:
|
32 |
-
logger.error("Unable to identify a single valuation column.")
|
33 |
-
raise ValueError("Dataset should contain exactly one column with 'valuation' in its name.")
|
34 |
-
|
35 |
-
valuation_column = valuation_columns[0]
|
36 |
-
logger.info(f"Using valuation column: {valuation_column}")
|
37 |
-
|
38 |
-
# Clean and prepare data
|
39 |
-
data["Valuation_Billions"] = data[valuation_column].replace({'\$': '', ',': ''}, regex=True)
|
40 |
-
data["Valuation_Billions"] = pd.to_numeric(data["Valuation_Billions"], errors='coerce')
|
41 |
-
data = data.apply(lambda col: col.str.strip() if col.dtype == "object" else col)
|
42 |
-
data.rename(columns={
|
43 |
-
"company": "Company",
|
44 |
-
"date_joined": "Date_Joined",
|
45 |
-
"country": "Country",
|
46 |
-
"city": "City",
|
47 |
-
"industry": "Industry",
|
48 |
-
"select_investors": "Select_Investors"
|
49 |
-
}, inplace=True)
|
50 |
-
|
51 |
-
logger.info("Data cleaned and columns renamed.")
|
52 |
-
|
53 |
-
# Build investor-company mapping
|
54 |
-
def build_investor_company_mapping(df):
|
55 |
-
mapping = {}
|
56 |
-
for _, row in df.iterrows():
|
57 |
-
company = row["Company"]
|
58 |
-
investors = row["Select_Investors"]
|
59 |
-
if pd.notnull(investors):
|
60 |
-
for investor in investors.split(","):
|
61 |
-
investor = investor.strip()
|
62 |
-
if investor:
|
63 |
-
mapping.setdefault(investor, []).append(company)
|
64 |
-
return mapping
|
65 |
-
|
66 |
-
investor_company_mapping = build_investor_company_mapping(data)
|
67 |
-
logger.info("Investor to company mapping created.")
|
68 |
-
|
69 |
-
# Filter investors by country, industry, investor selection, and company selection
|
70 |
-
def filter_investors(selected_country, selected_industry, selected_investors, selected_company):
|
71 |
-
filtered_data = data.copy()
|
72 |
-
if selected_country != "All":
|
73 |
-
filtered_data = filtered_data[filtered_data["Country"] == selected_country]
|
74 |
-
if selected_industry != "All":
|
75 |
-
filtered_data = filtered_data[filtered_data["Industry"] == selected_industry]
|
76 |
-
if selected_investors:
|
77 |
-
pattern = '|'.join([re.escape(inv) for inv in selected_investors])
|
78 |
-
filtered_data = filtered_data[filtered_data["Select_Investors"].str.contains(pattern, na=False)]
|
79 |
-
if selected_company != "All":
|
80 |
-
filtered_data = filtered_data[filtered_data["Company"] == selected_company]
|
81 |
-
|
82 |
-
investor_company_mapping_filtered = build_investor_company_mapping(filtered_data)
|
83 |
-
filtered_investors = list(investor_company_mapping_filtered.keys())
|
84 |
-
return filtered_investors, filtered_data
|
85 |
-
|
86 |
-
# Generate Plotly graph
|
87 |
-
def generate_graph(investors, filtered_data):
|
88 |
-
if not investors:
|
89 |
-
logger.warning("No investors selected.")
|
90 |
-
return go.Figure()
|
91 |
-
|
92 |
-
# Create a color map for investors
|
93 |
-
unique_investors = investors
|
94 |
-
num_colors = len(unique_investors)
|
95 |
-
color_palette = [
|
96 |
-
"#377eb8", # Blue
|
97 |
-
"#e41a1c", # Red
|
98 |
-
"#4daf4a", # Green
|
99 |
-
"#984ea3", # Purple
|
100 |
-
"#ff7f00", # Orange
|
101 |
-
"#ffff33", # Yellow
|
102 |
-
"#a65628", # Brown
|
103 |
-
"#f781bf", # Pink
|
104 |
-
"#999999", # Grey
|
105 |
-
]
|
106 |
-
while num_colors > len(color_palette):
|
107 |
-
color_palette.extend(color_palette)
|
108 |
-
|
109 |
-
investor_color_map = {investor: color_palette[i] for i, investor in enumerate(unique_investors)}
|
110 |
-
|
111 |
G = nx.Graph()
|
112 |
-
|
113 |
-
|
|
|
|
|
114 |
for company in companies:
|
115 |
-
G.
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
for
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
edge_y.extend([y0, y1, None])
|
128 |
-
|
129 |
-
edge_trace = go.Scatter(
|
130 |
-
x=edge_x,
|
131 |
-
y=edge_y,
|
132 |
-
line=dict(width=0.5, color='#aaaaaa'),
|
133 |
-
hoverinfo='none',
|
134 |
-
mode='lines'
|
135 |
-
)
|
136 |
-
|
137 |
-
node_x = []
|
138 |
-
node_y = []
|
139 |
-
node_text = []
|
140 |
-
node_color = []
|
141 |
-
node_size = []
|
142 |
-
node_hovertext = []
|
143 |
-
|
144 |
-
for node in G.nodes():
|
145 |
-
x, y = pos[node]
|
146 |
-
node_x.append(x)
|
147 |
-
node_y.append(y)
|
148 |
-
if node in investors:
|
149 |
-
node_text.append(node)
|
150 |
-
node_color.append(investor_color_map[node])
|
151 |
-
node_size.append(30)
|
152 |
-
node_hovertext.append(f"Investor: {node}")
|
153 |
else:
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
hovertext += f"<br>Valuation: ${valuation[0]}B"
|
170 |
-
node_hovertext.append(hovertext)
|
171 |
-
|
172 |
-
node_trace = go.Scatter(
|
173 |
-
x=node_x,
|
174 |
-
y=node_y,
|
175 |
-
text=node_text,
|
176 |
-
mode='markers+text',
|
177 |
-
hoverinfo='text',
|
178 |
-
hovertext=node_hovertext,
|
179 |
-
marker=dict(
|
180 |
-
showscale=False,
|
181 |
-
size=node_size,
|
182 |
-
color=node_color,
|
183 |
-
line=dict(width=0.5, color='#333333')
|
184 |
-
),
|
185 |
-
textposition="middle center",
|
186 |
-
textfont=dict(size=15, color="#000000")
|
187 |
-
)
|
188 |
-
|
189 |
-
legend_items = []
|
190 |
-
for investor in unique_investors:
|
191 |
-
legend_items.append(
|
192 |
-
go.Scatter(
|
193 |
-
x=[None],
|
194 |
-
y=[None],
|
195 |
-
mode='markers',
|
196 |
-
marker=dict(
|
197 |
-
size=14,
|
198 |
-
color=investor_color_map[investor]
|
199 |
-
),
|
200 |
-
legendgroup=investor,
|
201 |
-
showlegend=False,
|
202 |
-
name=investor
|
203 |
-
)
|
204 |
-
)
|
205 |
-
|
206 |
-
fig = go.Figure(data=legend_items + [edge_trace, node_trace])
|
207 |
-
fig.update_layout(
|
208 |
-
title="Venture Capital Networks in September 2024",
|
209 |
-
titlefont_size=24,
|
210 |
-
margin=dict(l=20, r=20, t=20, b=20),
|
211 |
-
hovermode='closest',
|
212 |
-
width=1400,
|
213 |
-
height=1000
|
214 |
)
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
)
|
221 |
-
|
222 |
-
|
223 |
|
224 |
-
#
|
225 |
-
|
226 |
-
|
227 |
-
if not investors:
|
228 |
-
return "No investors found with the selected filters.", go.Figure()
|
229 |
-
graph = generate_graph(investors, filtered_data)
|
230 |
-
return ', '.join(investors), graph
|
231 |
|
232 |
-
#
|
233 |
def main():
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
inputs = [country_filter, industry_filter, company_filter, investor_filter]
|
252 |
-
outputs = [investor_output, graph_output]
|
253 |
-
|
254 |
-
country_filter.change(app, inputs, outputs)
|
255 |
-
industry_filter.change(app, inputs, outputs)
|
256 |
-
company_filter.change(app, inputs, outputs)
|
257 |
-
investor_filter.change(app, inputs, outputs)
|
258 |
-
|
259 |
-
gr.Markdown("""
|
260 |
-
**Instructions:** Use the dropdowns to filter the network graph.
|
261 |
-
""")
|
262 |
-
|
263 |
-
demo.launch()
|
264 |
|
265 |
if __name__ == "__main__":
|
266 |
main()
|
|
|
|
|
1 |
import networkx as nx
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
import gradio as gr
|
4 |
+
from io import BytesIO
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
# Define investors and their companies
|
8 |
+
investors = {
|
9 |
+
"Accel": ["Meta", "Dropbox", "Spotify", "Adroll", "PackLink", "Zoom", "Slack"],
|
10 |
+
"Andreessen Horowitz": [
|
11 |
+
"Airbnb", "Lyft", "Pinterest", "Coinbase", "Robinhood", "Slack"
|
12 |
+
],
|
13 |
+
"Google Ventures": ["Uber", "LendingClub"],
|
14 |
+
"Greylock": ["Workday", "Palo Alto Networks"],
|
15 |
+
"Lightspeed Venture Partners": ["Snap", "Grubhub", "AppDynamics"],
|
16 |
+
"Benchmark": ["Snap", "Uber", "WeWork"],
|
17 |
+
"Norwest Venture Partners": ["LendingClub", "Opendoor"],
|
18 |
+
"Emergence Capital Partners": ["Zoom", "Box", "Salesforce"],
|
19 |
+
"Trinity Ventures": ["New Relic", "Care.com", "TubeMogul"],
|
20 |
+
"Citi Ventures": ["Square", "Nutanix"],
|
21 |
+
"Sequoia": ["Alphabet (Google)", "NVIDIA", "Dropbox", "Airbnb", "Meta"],
|
22 |
+
"Y Combinator": ["Dropbox", "Airbnb", "Coinbase", "DoorDash", "Reddit"]
|
23 |
+
}
|
24 |
+
|
25 |
+
# Example market capitalization values (in billions USD)
|
26 |
+
market_cap = {
|
27 |
+
"Meta": 900,
|
28 |
+
"Dropbox": 10,
|
29 |
+
"Spotify": 30,
|
30 |
+
"Zoom": 20,
|
31 |
+
"Slack": 27,
|
32 |
+
"Airbnb": 100,
|
33 |
+
"Lyft": 4,
|
34 |
+
"Pinterest": 14,
|
35 |
+
"Coinbase": 70,
|
36 |
+
"Robinhood": 10,
|
37 |
+
"Uber": 60,
|
38 |
+
"LendingClub": 1,
|
39 |
+
"Snap": 18,
|
40 |
+
"Grubhub": 6,
|
41 |
+
"AppDynamics": 1,
|
42 |
+
"WeWork": 0.9,
|
43 |
+
"Opendoor": 3,
|
44 |
+
"Box": 4,
|
45 |
+
"Salesforce": 200,
|
46 |
+
"Square": 90,
|
47 |
+
"Nutanix": 10,
|
48 |
+
"Alphabet (Google)": 1500,
|
49 |
+
"NVIDIA": 1200
|
50 |
+
}
|
51 |
+
|
52 |
+
# Assign default size for missing companies
|
53 |
+
default_size = 5
|
54 |
+
|
55 |
+
# Define a color map for the investors
|
56 |
+
investor_colors = {
|
57 |
+
"Accel": "#1f77b4",
|
58 |
+
"Andreessen Horowitz": "#ff7f0e",
|
59 |
+
"Google Ventures": "#2ca02c",
|
60 |
+
"Greylock": "#d62728",
|
61 |
+
"Lightspeed Venture Partners": "#9467bd",
|
62 |
+
"Benchmark": "#8c564b",
|
63 |
+
"Norwest Venture Partners": "#e377c2",
|
64 |
+
"Emergence Capital Partners": "#7f7f7f",
|
65 |
+
"Trinity Ventures": "#bcbd22",
|
66 |
+
"Citi Ventures": "#17becf",
|
67 |
+
"Sequoia": "#1b9e77",
|
68 |
+
"Y Combinator": "#d95f02"
|
69 |
+
}
|
70 |
+
|
71 |
+
def generate_graph(selected_investors):
|
72 |
+
if not selected_investors:
|
73 |
+
selected_investors = list(investors.keys())
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
G = nx.Graph()
|
76 |
+
|
77 |
+
# Add edges and nodes based on selected investors
|
78 |
+
for investor in selected_investors:
|
79 |
+
companies = investors[investor]
|
80 |
for company in companies:
|
81 |
+
G.add_edge(investor, company, color=investor_colors[investor])
|
82 |
+
|
83 |
+
# Get edge colors
|
84 |
+
edge_colors = [G[u][v]['color'] for u, v in G.edges]
|
85 |
+
|
86 |
+
# Set node colors and sizes
|
87 |
+
node_colors = []
|
88 |
+
node_sizes = []
|
89 |
+
for node in G.nodes:
|
90 |
+
if node in investor_colors:
|
91 |
+
node_colors.append(investor_colors[node])
|
92 |
+
node_sizes.append(2000) # Fixed size for investors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
else:
|
94 |
+
node_colors.append("#F0E68C") # Khaki for companies
|
95 |
+
node_sizes.append(market_cap.get(node, default_size) * 100) # Scale up sizes
|
96 |
+
|
97 |
+
# Create plot
|
98 |
+
plt.figure(figsize=(18, 18))
|
99 |
+
pos = nx.spring_layout(G, k=0.2, seed=42) # Fixed seed for consistency
|
100 |
+
nx.draw(
|
101 |
+
G, pos,
|
102 |
+
with_labels=True,
|
103 |
+
node_size=node_sizes,
|
104 |
+
node_color=node_colors,
|
105 |
+
font_size=10,
|
106 |
+
font_weight="bold",
|
107 |
+
edge_color=edge_colors,
|
108 |
+
width=2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
)
|
110 |
+
plt.title("Venture Funded Companies as a Densely Connected Subgraph", fontsize=20)
|
111 |
+
plt.axis('off')
|
112 |
+
|
113 |
+
# Save plot to a BytesIO object
|
114 |
+
buf = BytesIO()
|
115 |
+
plt.savefig(buf, format="png", bbox_inches="tight")
|
116 |
+
plt.close()
|
117 |
+
buf.seek(0)
|
118 |
|
119 |
+
# Convert BytesIO to PIL image
|
120 |
+
image = Image.open(buf)
|
121 |
+
return image
|
|
|
|
|
|
|
|
|
122 |
|
123 |
+
# Define Gradio interface
|
124 |
def main():
|
125 |
+
# Create a sorted list of investors for better UX
|
126 |
+
investor_list = sorted(investors.keys())
|
127 |
+
|
128 |
+
iface = gr.Interface(
|
129 |
+
fn=generate_graph,
|
130 |
+
inputs=gr.CheckboxGroup(
|
131 |
+
choices=investor_list,
|
132 |
+
label="Select Investors",
|
133 |
+
value=investor_list # Default to all selected
|
134 |
+
),
|
135 |
+
outputs=gr.Image(type="pil", label="Venture Network Graph"),
|
136 |
+
title="Venture Networks Visualization",
|
137 |
+
description="Select investors to visualize their investments in various companies. The graph shows connections between investors and the companies they've invested in. Node sizes represent market capitalization.",
|
138 |
+
flagging_mode="never"
|
139 |
+
)
|
140 |
+
|
141 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
if __name__ == "__main__":
|
144 |
main()
|