File size: 6,731 Bytes
2308360
 
 
 
 
 
 
45e3fbb
2308360
 
 
45e3fbb
2308360
 
 
 
 
cb8ca88
2308360
1ebc990
2308360
57e3699
2308360
6a66c00
2308360
 
2be59ab
f96bbd5
2308360
 
58e5e3c
9f50431
1558184
17ccabc
177a5cf
2308360
 
05ce587
609d803
2308360
45e3fbb
2308360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import yfinance as yf
import matplotlib.pyplot as plt
import numpy as np
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
from PIL import Image
import io
import gradio as gr
from cachetools import cached, TTLCache
import cProfile
import pstats

# Global fontsize variable
FONT_SIZE = 32
# Company ticker mapping
COMPANY_TICKERS = { 
    'Union Pacific': 'UNP',
    'HubSpot': 'HUBS',
    'Canadian Pacific KC': 'CP',
    'Smartsheet':'SMAR',
    'FedEx': 'FDX',
    'Dollar General Corp': 'DG', 
    'Autozone': 'AZO',
    'Honeywell International':'HON',
    'XPO Logistics': 'XPO',
    'JB Hunt Transport': 'JBHT',
    'Gilead Sciences': 'GILD',
    'Tractor Supply Co': 'TSCO',
    'Broadcom Inc':'AVGO',
    'Snap-On': 'SNA',
    'Eastman Chemical Co': 'EMN',
    'Bridgestone': 'BRDCY',
    'Expeditors Int': 'EXPD', 
    'EMCOR Group': 'EME',
    'Johnson Controls': 'JCI',
    'ArcBest': 'ARCB',
    'Arch Capital Group': 'ACGL',
    'Gartner': 'IT',
    'Arrow Electronics': 'ARW'
}


# Cache with 1-day TTL
cache = TTLCache(maxsize=100, ttl=86400)

@cached(cache)
def fetch_historical_data(ticker, start_date, end_date):
    """Fetch historical stock data and market cap from Yahoo Finance."""
    try:
        data = yf.download(ticker, start=start_date, end=end_date)
        if data.empty:
            raise ValueError(f"No data found for ticker {ticker}")
        info = yf.Ticker(ticker).info
        market_cap = info.get('marketCap', 'N/A')
        if market_cap != 'N/A':
            market_cap = market_cap / 1e9  # Convert to billions
        return data, market_cap
    except Exception as e:
        print(f"Error fetching data for {ticker}: {e}")
        return None, 'N/A'

def plot_to_image(plt, title, market_cap):
    """Convert plot to a PIL Image object."""
    plt.title(title, fontsize=FONT_SIZE + 1, pad=40)
    plt.suptitle(f'Market Cap: ${market_cap:.2f} Billion', fontsize=FONT_SIZE - 5, y=0.92, weight='bold')
    plt.legend(fontsize=FONT_SIZE)
    plt.xlabel('Date', fontsize=FONT_SIZE)
    plt.ylabel('', fontsize=FONT_SIZE)
    plt.grid(True)
    plt.xticks(rotation=45, ha='right', fontsize=FONT_SIZE)
    plt.yticks(fontsize=FONT_SIZE)
    plt.tight_layout(rect=[0, 0, 1, 0.88])

    buf = io.BytesIO()
    plt.savefig(buf, format='png', dpi=400)
    plt.close()
    buf.seek(0)
    return Image.open(buf)

def plot_indicator(data, company_name, ticker, indicator, market_cap):
    """Plot selected technical indicator for a single company."""
    plt.figure(figsize=(16, 10))
    if indicator == "SMA":
        sma_55 = data['Close'].rolling(window=55).mean()
        sma_100 = data['Close'].rolling(window=100).mean()  # 100-day SMA
        sma_200 = data['Close'].rolling(window=252).mean()
        plt.plot(data.index, data['Close'], label='Close')
        plt.plot(data.index, sma_55, label='55-day SMA')
        plt.plot(data.index, sma_100, label='100-day SMA')  # Plot 100-day SMA
        plt.plot(data.index, sma_200, label='252-day SMA')
        plt.ylabel('Price', fontsize=FONT_SIZE)
    elif indicator == "MACD":
        exp1 = data['Close'].ewm(span=12, adjust=False).mean()
        exp2 = data['Close'].ewm(span=26, adjust=False).mean()
        macd = exp1 - exp2
        signal = macd.ewm(span=9, adjust=False).mean()
        plt.plot(data.index, macd, label='MACD')
        plt.plot(data.index, signal, label='Signal Line')
        plt.bar(data.index, macd - signal, label='MACD Histogram')
        plt.ylabel('MACD', fontsize=FONT_SIZE)

    return plot_to_image(plt, f'{company_name} ({ticker}) {indicator}', market_cap)

def plot_indicators(company_names, indicator_types):
    """Plot the selected indicators for the selected companies."""
    images = []
    total_market_cap = 0
    if len(company_names) > 7:
        return None, "You can select up to 7 companies at the same time.", None
    if len(company_names) > 1 and len(indicator_types) > 1:
        return None, "You can only select one indicator when selecting multiple companies.", None

    with ThreadPoolExecutor() as executor:
        future_to_company = {
            executor.submit(fetch_historical_data, COMPANY_TICKERS[company], '2000-01-01', datetime.now().strftime('%Y-%m-%d')): (company, indicator)
            for company in company_names
            for indicator in indicator_types
        }

        for future in as_completed(future_to_company):
            company, indicator = future_to_company[future]
            ticker = COMPANY_TICKERS[company]
            data, market_cap = future.result()
            if data is None:
                continue
            images.append(plot_indicator(data, company, ticker, indicator, market_cap))
            if market_cap != 'N/A':
                total_market_cap += market_cap

    return images, "", total_market_cap

def select_all_indicators(select_all):
    """Select or deselect all indicators based on the select_all flag."""
    indicators = ["SMA", "MACD"]
    return indicators if select_all else []

def launch_gradio_app():
    """Launch the Gradio app for interactive plotting."""
    company_choices = list(COMPANY_TICKERS.keys())
    indicators = ["SMA", "MACD"]

    def fetch_and_plot(company_names, indicator_types):
        images, error_message, total_market_cap = plot_indicators(company_names, indicator_types)
        if error_message:
            return [None] * len(indicator_types), error_message, None
        return images, "", f"Total Market Cap: ${total_market_cap:.2f} Billion" if total_market_cap else "N/A"

    with gr.Blocks() as demo:
        company_checkboxgroup = gr.CheckboxGroup(choices=company_choices, label="Select Companies")
        
        select_all_checkbox = gr.Checkbox(label="Select All Indicators", value=False, interactive=True)
        indicator_types_checkboxgroup = gr.CheckboxGroup(choices=indicators, label="Select Technical Indicators")
        select_all_checkbox.change(select_all_indicators, inputs=select_all_checkbox, outputs=indicator_types_checkboxgroup)
        
        plot_gallery = gr.Gallery(label="Indicator Plots")
        error_markdown = gr.Markdown()
        market_cap_text = gr.Markdown()

        gr.Interface(
            fetch_and_plot, 
            [company_checkboxgroup, indicator_types_checkboxgroup], 
            [plot_gallery, error_markdown, market_cap_text]
        )

    demo.launch()

def profile_code():
    """Profile the main functions to find speed bottlenecks."""
    profiler = cProfile.Profile()
    profiler.enable()

    launch_gradio_app()

    profiler.disable()
    stats = pstats.Stats(profiler).sort_stats('cumtime')
    stats.print_stats(10)

if __name__ == "__main__":
    profile_code()