Spaces:
Sleeping
Sleeping
File size: 6,731 Bytes
2308360 45e3fbb 2308360 45e3fbb 2308360 cb8ca88 2308360 1ebc990 2308360 57e3699 2308360 6a66c00 2308360 2be59ab f96bbd5 2308360 58e5e3c 9f50431 1558184 17ccabc 177a5cf 2308360 05ce587 609d803 2308360 45e3fbb 2308360 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import yfinance as yf
import matplotlib.pyplot as plt
import numpy as np
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
from PIL import Image
import io
import gradio as gr
from cachetools import cached, TTLCache
import cProfile
import pstats
# Global fontsize variable
FONT_SIZE = 32
# Company ticker mapping
COMPANY_TICKERS = {
'Union Pacific': 'UNP',
'HubSpot': 'HUBS',
'Canadian Pacific KC': 'CP',
'Smartsheet':'SMAR',
'FedEx': 'FDX',
'Dollar General Corp': 'DG',
'Autozone': 'AZO',
'Honeywell International':'HON',
'XPO Logistics': 'XPO',
'JB Hunt Transport': 'JBHT',
'Gilead Sciences': 'GILD',
'Tractor Supply Co': 'TSCO',
'Broadcom Inc':'AVGO',
'Snap-On': 'SNA',
'Eastman Chemical Co': 'EMN',
'Bridgestone': 'BRDCY',
'Expeditors Int': 'EXPD',
'EMCOR Group': 'EME',
'Johnson Controls': 'JCI',
'ArcBest': 'ARCB',
'Arch Capital Group': 'ACGL',
'Gartner': 'IT',
'Arrow Electronics': 'ARW'
}
# Cache with 1-day TTL
cache = TTLCache(maxsize=100, ttl=86400)
@cached(cache)
def fetch_historical_data(ticker, start_date, end_date):
"""Fetch historical stock data and market cap from Yahoo Finance."""
try:
data = yf.download(ticker, start=start_date, end=end_date)
if data.empty:
raise ValueError(f"No data found for ticker {ticker}")
info = yf.Ticker(ticker).info
market_cap = info.get('marketCap', 'N/A')
if market_cap != 'N/A':
market_cap = market_cap / 1e9 # Convert to billions
return data, market_cap
except Exception as e:
print(f"Error fetching data for {ticker}: {e}")
return None, 'N/A'
def plot_to_image(plt, title, market_cap):
"""Convert plot to a PIL Image object."""
plt.title(title, fontsize=FONT_SIZE + 1, pad=40)
plt.suptitle(f'Market Cap: ${market_cap:.2f} Billion', fontsize=FONT_SIZE - 5, y=0.92, weight='bold')
plt.legend(fontsize=FONT_SIZE)
plt.xlabel('Date', fontsize=FONT_SIZE)
plt.ylabel('', fontsize=FONT_SIZE)
plt.grid(True)
plt.xticks(rotation=45, ha='right', fontsize=FONT_SIZE)
plt.yticks(fontsize=FONT_SIZE)
plt.tight_layout(rect=[0, 0, 1, 0.88])
buf = io.BytesIO()
plt.savefig(buf, format='png', dpi=400)
plt.close()
buf.seek(0)
return Image.open(buf)
def plot_indicator(data, company_name, ticker, indicator, market_cap):
"""Plot selected technical indicator for a single company."""
plt.figure(figsize=(16, 10))
if indicator == "SMA":
sma_55 = data['Close'].rolling(window=55).mean()
sma_100 = data['Close'].rolling(window=100).mean() # 100-day SMA
sma_200 = data['Close'].rolling(window=252).mean()
plt.plot(data.index, data['Close'], label='Close')
plt.plot(data.index, sma_55, label='55-day SMA')
plt.plot(data.index, sma_100, label='100-day SMA') # Plot 100-day SMA
plt.plot(data.index, sma_200, label='252-day SMA')
plt.ylabel('Price', fontsize=FONT_SIZE)
elif indicator == "MACD":
exp1 = data['Close'].ewm(span=12, adjust=False).mean()
exp2 = data['Close'].ewm(span=26, adjust=False).mean()
macd = exp1 - exp2
signal = macd.ewm(span=9, adjust=False).mean()
plt.plot(data.index, macd, label='MACD')
plt.plot(data.index, signal, label='Signal Line')
plt.bar(data.index, macd - signal, label='MACD Histogram')
plt.ylabel('MACD', fontsize=FONT_SIZE)
return plot_to_image(plt, f'{company_name} ({ticker}) {indicator}', market_cap)
def plot_indicators(company_names, indicator_types):
"""Plot the selected indicators for the selected companies."""
images = []
total_market_cap = 0
if len(company_names) > 7:
return None, "You can select up to 7 companies at the same time.", None
if len(company_names) > 1 and len(indicator_types) > 1:
return None, "You can only select one indicator when selecting multiple companies.", None
with ThreadPoolExecutor() as executor:
future_to_company = {
executor.submit(fetch_historical_data, COMPANY_TICKERS[company], '2000-01-01', datetime.now().strftime('%Y-%m-%d')): (company, indicator)
for company in company_names
for indicator in indicator_types
}
for future in as_completed(future_to_company):
company, indicator = future_to_company[future]
ticker = COMPANY_TICKERS[company]
data, market_cap = future.result()
if data is None:
continue
images.append(plot_indicator(data, company, ticker, indicator, market_cap))
if market_cap != 'N/A':
total_market_cap += market_cap
return images, "", total_market_cap
def select_all_indicators(select_all):
"""Select or deselect all indicators based on the select_all flag."""
indicators = ["SMA", "MACD"]
return indicators if select_all else []
def launch_gradio_app():
"""Launch the Gradio app for interactive plotting."""
company_choices = list(COMPANY_TICKERS.keys())
indicators = ["SMA", "MACD"]
def fetch_and_plot(company_names, indicator_types):
images, error_message, total_market_cap = plot_indicators(company_names, indicator_types)
if error_message:
return [None] * len(indicator_types), error_message, None
return images, "", f"Total Market Cap: ${total_market_cap:.2f} Billion" if total_market_cap else "N/A"
with gr.Blocks() as demo:
company_checkboxgroup = gr.CheckboxGroup(choices=company_choices, label="Select Companies")
select_all_checkbox = gr.Checkbox(label="Select All Indicators", value=False, interactive=True)
indicator_types_checkboxgroup = gr.CheckboxGroup(choices=indicators, label="Select Technical Indicators")
select_all_checkbox.change(select_all_indicators, inputs=select_all_checkbox, outputs=indicator_types_checkboxgroup)
plot_gallery = gr.Gallery(label="Indicator Plots")
error_markdown = gr.Markdown()
market_cap_text = gr.Markdown()
gr.Interface(
fetch_and_plot,
[company_checkboxgroup, indicator_types_checkboxgroup],
[plot_gallery, error_markdown, market_cap_text]
)
demo.launch()
def profile_code():
"""Profile the main functions to find speed bottlenecks."""
profiler = cProfile.Profile()
profiler.enable()
launch_gradio_app()
profiler.disable()
stats = pstats.Stats(profiler).sort_stats('cumtime')
stats.print_stats(10)
if __name__ == "__main__":
profile_code()
|