LeonceNsh commited on
Commit
5b4c268
·
verified ·
1 Parent(s): d85e5cd

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +109 -0
app.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
3
+ import gradio as gr
4
+
5
+ def generate_prompt(question, prompt_file="prompt.md", metadata_file="metadata.sql"):
6
+ """
7
+ Generates the prompt by reading the prompt template and table metadata,
8
+ then formatting them with the user's question.
9
+ """
10
+ try:
11
+ with open(prompt_file, "r") as f:
12
+ prompt = f.read()
13
+ except FileNotFoundError:
14
+ return "Error: prompt.md file not found."
15
+
16
+ try:
17
+ with open(metadata_file, "r") as f:
18
+ table_metadata_string = f.read()
19
+ except FileNotFoundError:
20
+ return "Error: metadata.sql file not found."
21
+
22
+ prompt = prompt.format(
23
+ user_question=question, table_metadata_string=table_metadata_string
24
+ )
25
+ return prompt
26
+
27
+ def get_tokenizer_model(model_name):
28
+ """
29
+ Loads the tokenizer and model from the specified model repository.
30
+ """
31
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
32
+ model = AutoModelForCausalLM.from_pretrained(
33
+ model_name,
34
+ trust_remote_code=True, # Set to True if the model uses custom code
35
+ torch_dtype=torch.float16,
36
+ device_map="auto", # Automatically maps the model to available devices
37
+ use_cache=True,
38
+ )
39
+ return tokenizer, model
40
+
41
+ # Load the tokenizer and model once when the script starts
42
+ model_name = "defog/sqlcoder-7b-2" # Replace with your model name
43
+ print("Loading model and tokenizer...")
44
+ tokenizer, model = get_tokenizer_model(model_name)
45
+ print("Model and tokenizer loaded successfully.")
46
+
47
+ # Initialize the text generation pipeline
48
+ text_gen_pipeline = pipeline(
49
+ "text-generation",
50
+ model=model,
51
+ tokenizer=tokenizer,
52
+ max_new_tokens=300,
53
+ do_sample=False, # Disable sampling for deterministic output
54
+ return_full_text=False,
55
+ num_beams=5, # Use beam search for better quality
56
+ )
57
+
58
+ def run_inference_gradio(question, prompt_file="prompt.md", metadata_file="metadata.sql"):
59
+ """
60
+ Generates an SQL query based on the user's natural language question.
61
+ """
62
+ if not question.strip():
63
+ return "Please enter a valid question."
64
+
65
+ prompt = generate_prompt(question, prompt_file, metadata_file)
66
+
67
+ if prompt.startswith("Error:"):
68
+ return prompt # Return the error message if files are missing
69
+
70
+ eos_token_id = tokenizer.eos_token_id
71
+ try:
72
+ generated = text_gen_pipeline(
73
+ prompt,
74
+ num_return_sequences=1,
75
+ eos_token_id=eos_token_id,
76
+ pad_token_id=eos_token_id,
77
+ )
78
+ except Exception as e:
79
+ return f"Error during model inference: {str(e)}"
80
+
81
+ generated_text = generated[0]["generated_text"]
82
+
83
+ # Extract the SQL query from the generated text
84
+ sql_query = generated_text.split(";")[0].split("```")[0].strip() + ";"
85
+ return sql_query
86
+
87
+ # Define the Gradio interface
88
+ iface = gr.Interface(
89
+ fn=run_inference_gradio,
90
+ inputs=gr.Textbox(
91
+ lines=4,
92
+ placeholder="Enter your natural language question here...",
93
+ label="Question"
94
+ ),
95
+ outputs=gr.Textbox(label="Generated SQL Query"),
96
+ title="Text-to-SQL Generator",
97
+ description=(
98
+ "Enter a natural language question related to your database, and this tool "
99
+ "will generate the corresponding SQL query. Ensure that 'prompt.md' and "
100
+ "'metadata.sql' are correctly set up in the application directory."
101
+ ),
102
+ examples=[
103
+ ["Do we get more sales from customers in New York compared to customers in San Francisco? Give me the total sales for each city, and the difference between the two."]
104
+ ],
105
+ allow_flagging="never"
106
+ )
107
+
108
+ if __name__ == "__main__":
109
+ iface.launch()