Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ import gradio as gr
|
|
3 |
import duckdb
|
4 |
import re
|
5 |
from functools import lru_cache
|
|
|
6 |
|
7 |
# Load the Parquet dataset path
|
8 |
dataset_path = 'sample_contract_df.parquet' # Update with your Parquet file path
|
@@ -42,9 +43,6 @@ def get_schema():
|
|
42 |
# Map column names to their types
|
43 |
COLUMN_TYPES = {col['column_name']: col['column_type'] for col in get_schema()}
|
44 |
|
45 |
-
# Define columns that are numeric
|
46 |
-
NUMERIC_COLUMNS = {col['column_name'] for col in get_schema() if col['column_type'] in ['DOUBLE', 'BIGINT', 'INT', 'FLOAT', 'DECIMAL']}
|
47 |
-
|
48 |
# Function to load the dataset schema into DuckDB
|
49 |
@lru_cache(maxsize=1)
|
50 |
def load_dataset_schema():
|
@@ -60,39 +58,74 @@ def load_dataset_schema():
|
|
60 |
finally:
|
61 |
con.close()
|
62 |
|
63 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
def parse_query(nl_query):
|
65 |
"""
|
66 |
Converts a natural language query into SQL WHERE conditions based on the schema.
|
67 |
"""
|
68 |
-
#
|
69 |
query = nl_query.lower()
|
70 |
|
71 |
-
#
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
# Generate SQL based on user query
|
98 |
def generate_sql_query(query):
|
@@ -100,7 +133,10 @@ def generate_sql_query(query):
|
|
100 |
Generates a SQL query based on the natural language input.
|
101 |
"""
|
102 |
condition = parse_query(query)
|
103 |
-
|
|
|
|
|
|
|
104 |
return sql_query
|
105 |
|
106 |
# Execute the SQL query and return results or error
|
@@ -138,23 +174,20 @@ with gr.Blocks() as demo:
|
|
138 |
## Instructions
|
139 |
|
140 |
1. **Describe the data you want to retrieve**: For example:
|
141 |
-
- `
|
142 |
-
- `
|
143 |
-
-
|
144 |
-
-
|
145 |
-
-
|
146 |
-
|
147 |
-
- Which awards are currently active, and what are their respective award numbers and dates?
|
148 |
-
|
149 |
-
|
150 |
2. **Generate SQL**: Click "Generate SQL" to see the SQL query that will be executed.
|
151 |
3. **Execute Query**: Click "Execute Query" to run the query and view the results.
|
152 |
4. **View Dataset Schema**: Check the "Dataset Schema" tab to understand available columns and their types.
|
153 |
|
154 |
## Example Queries
|
155 |
|
156 |
-
- `award
|
157 |
-
- `
|
158 |
""")
|
159 |
|
160 |
with gr.Tabs():
|
@@ -164,7 +197,7 @@ with gr.Blocks() as demo:
|
|
164 |
with gr.Column(scale=1):
|
165 |
query = gr.Textbox(
|
166 |
label="Natural Language Query",
|
167 |
-
placeholder='e.g., "
|
168 |
lines=4
|
169 |
)
|
170 |
btn_generate = gr.Button("Generate SQL")
|
|
|
3 |
import duckdb
|
4 |
import re
|
5 |
from functools import lru_cache
|
6 |
+
from transformers import pipeline
|
7 |
|
8 |
# Load the Parquet dataset path
|
9 |
dataset_path = 'sample_contract_df.parquet' # Update with your Parquet file path
|
|
|
43 |
# Map column names to their types
|
44 |
COLUMN_TYPES = {col['column_name']: col['column_type'] for col in get_schema()}
|
45 |
|
|
|
|
|
|
|
46 |
# Function to load the dataset schema into DuckDB
|
47 |
@lru_cache(maxsize=1)
|
48 |
def load_dataset_schema():
|
|
|
58 |
finally:
|
59 |
con.close()
|
60 |
|
61 |
+
# Initialize the NLP model for query parsing
|
62 |
+
@lru_cache(maxsize=1)
|
63 |
+
def get_nlp_model():
|
64 |
+
# We use a zero-shot-classification pipeline for query intent understanding
|
65 |
+
classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
66 |
+
return classifier
|
67 |
+
|
68 |
+
# Advanced Natural Language to SQL Parser using NLP
|
69 |
def parse_query(nl_query):
|
70 |
"""
|
71 |
Converts a natural language query into SQL WHERE conditions based on the schema.
|
72 |
"""
|
73 |
+
# Tokenize and normalize the query
|
74 |
query = nl_query.lower()
|
75 |
|
76 |
+
# Identify columns and possible operations
|
77 |
+
columns = [col['column_name'] for col in get_schema()]
|
78 |
+
operations = ['greater than or equal to', 'less than or equal to', 'greater than', 'less than', 'equal to', 'not equal to', 'between', 'contains', 'starts with', 'ends with']
|
79 |
+
|
80 |
+
# Extract conditions from the query
|
81 |
+
conditions = []
|
82 |
+
|
83 |
+
# Simple heuristic parsing (can be replaced with more advanced NLP techniques)
|
84 |
+
for col in columns:
|
85 |
+
if col in query:
|
86 |
+
for op in operations:
|
87 |
+
if op in query:
|
88 |
+
pattern = rf"{col}\s+{op}\s+(.*)"
|
89 |
+
match = re.search(pattern, query)
|
90 |
+
if match:
|
91 |
+
value = match.group(1).strip(' "')
|
92 |
+
sql_condition = ""
|
93 |
+
|
94 |
+
# Map operations to SQL syntax
|
95 |
+
if op == 'greater than or equal to':
|
96 |
+
sql_condition = f"{col} >= {value}"
|
97 |
+
elif op == 'less than or equal to':
|
98 |
+
sql_condition = f"{col} <= {value}"
|
99 |
+
elif op == 'greater than':
|
100 |
+
sql_condition = f"{col} > {value}"
|
101 |
+
elif op == 'less than':
|
102 |
+
sql_condition = f"{col} < {value}"
|
103 |
+
elif op == 'equal to':
|
104 |
+
sql_condition = f"{col} = '{value}'"
|
105 |
+
elif op == 'not equal to':
|
106 |
+
sql_condition = f"{col} != '{value}'"
|
107 |
+
elif op == 'between':
|
108 |
+
values = value.split(' and ')
|
109 |
+
if len(values) == 2:
|
110 |
+
sql_condition = f"{col} BETWEEN {values[0]} AND {values[1]}"
|
111 |
+
elif op == 'contains':
|
112 |
+
sql_condition = f"{col} LIKE '%{value}%'"
|
113 |
+
elif op == 'starts with':
|
114 |
+
sql_condition = f"{col} LIKE '{value}%'"
|
115 |
+
elif op == 'ends with':
|
116 |
+
sql_condition = f"{col} LIKE '%{value}'"
|
117 |
+
|
118 |
+
if sql_condition:
|
119 |
+
conditions.append(sql_condition)
|
120 |
+
break
|
121 |
+
|
122 |
+
# Combine conditions with AND
|
123 |
+
if conditions:
|
124 |
+
where_clause = ' AND '.join(conditions)
|
125 |
+
else:
|
126 |
+
where_clause = ''
|
127 |
+
|
128 |
+
return where_clause
|
129 |
|
130 |
# Generate SQL based on user query
|
131 |
def generate_sql_query(query):
|
|
|
133 |
Generates a SQL query based on the natural language input.
|
134 |
"""
|
135 |
condition = parse_query(query)
|
136 |
+
if condition:
|
137 |
+
sql_query = f"SELECT * FROM contract_data WHERE {condition}"
|
138 |
+
else:
|
139 |
+
sql_query = "SELECT * FROM contract_data"
|
140 |
return sql_query
|
141 |
|
142 |
# Execute the SQL query and return results or error
|
|
|
174 |
## Instructions
|
175 |
|
176 |
1. **Describe the data you want to retrieve**: For example:
|
177 |
+
- `Show all awards greater than 1,000,000 in California`
|
178 |
+
- `List awardees who received multiple awards along with award amounts`
|
179 |
+
- `Number of awards issued by each department division`
|
180 |
+
- `Distribution of awards by city and zip code across different countries`
|
181 |
+
- `Active awards with their award numbers and dates`
|
182 |
+
|
|
|
|
|
|
|
183 |
2. **Generate SQL**: Click "Generate SQL" to see the SQL query that will be executed.
|
184 |
3. **Execute Query**: Click "Execute Query" to run the query and view the results.
|
185 |
4. **View Dataset Schema**: Check the "Dataset Schema" tab to understand available columns and their types.
|
186 |
|
187 |
## Example Queries
|
188 |
|
189 |
+
- `award greater than 1000000 and state equal to "CA"`
|
190 |
+
- `List awards where department_ind_agency contains "Defense"`
|
191 |
""")
|
192 |
|
193 |
with gr.Tabs():
|
|
|
197 |
with gr.Column(scale=1):
|
198 |
query = gr.Textbox(
|
199 |
label="Natural Language Query",
|
200 |
+
placeholder='e.g., "Show all awards greater than 1,000,000 in California"',
|
201 |
lines=4
|
202 |
)
|
203 |
btn_generate = gr.Button("Generate SQL")
|