Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,12 @@
|
|
1 |
-
import os
|
2 |
import json
|
3 |
import gradio as gr
|
4 |
import duckdb
|
5 |
|
6 |
-
# Load the Parquet dataset
|
7 |
-
dataset_path = 'sample_contract_df.parquet' # Update with your Parquet file
|
8 |
|
9 |
-
# Load the dataset with DuckDB
|
10 |
-
def
|
11 |
con = duckdb.connect()
|
12 |
con.execute(f"CREATE VIEW contract_data AS SELECT * FROM '{dataset_path}'")
|
13 |
schema = con.execute("DESCRIBE contract_data").fetchdf()
|
@@ -16,23 +15,8 @@ def load_dataset():
|
|
16 |
|
17 |
# Generate SQL based on schema and user query
|
18 |
def generate_sql_query(features, query):
|
19 |
-
|
20 |
-
|
21 |
-
"role": "system",
|
22 |
-
"content": "You are a SQL query expert assistant that generates DuckDB SQL queries based on the user's natural language query and dataset schema.",
|
23 |
-
},
|
24 |
-
{
|
25 |
-
"role": "user",
|
26 |
-
"content": f"""table contract_data
|
27 |
-
# Features
|
28 |
-
{features}
|
29 |
-
# Query
|
30 |
-
{query}
|
31 |
-
""",
|
32 |
-
},
|
33 |
-
]
|
34 |
-
# Here we use DuckDB directly instead of an external API
|
35 |
-
sql_query = f"SELECT * FROM contract_data WHERE {query}" # Simple example; adapt for complex queries
|
36 |
return sql_query
|
37 |
|
38 |
# Execute the SQL query and display results
|
@@ -41,38 +25,35 @@ def execute_query(sql_query):
|
|
41 |
con.execute(f"CREATE VIEW contract_data AS SELECT * FROM '{dataset_path}'")
|
42 |
result_df = con.execute(sql_query).fetchdf()
|
43 |
con.close()
|
44 |
-
return result_df.to_markdown() #
|
45 |
|
46 |
# Gradio app UI
|
47 |
with gr.Blocks() as demo:
|
48 |
gr.Markdown("""
|
49 |
# Local Parquet SQL Query App
|
50 |
-
Query and explore
|
51 |
""")
|
52 |
|
53 |
-
#
|
54 |
-
schema =
|
55 |
-
|
56 |
-
gr.
|
57 |
|
58 |
-
# User
|
59 |
query = gr.Textbox(label="Natural Language Query", placeholder="Enter a condition, e.g., 'amount > 1000'")
|
60 |
sql_out = gr.Code(label="Generated SQL Query", language="sql")
|
61 |
results_out = gr.Markdown(label="Query Results")
|
62 |
|
63 |
# Buttons to generate and execute SQL
|
64 |
-
|
65 |
-
|
66 |
-
btn_execute = gr.Button("Execute Query")
|
67 |
|
68 |
-
#
|
69 |
btn_generate.click(
|
70 |
fn=generate_sql_query,
|
71 |
-
inputs=[features, query],
|
72 |
outputs=sql_out,
|
73 |
)
|
74 |
-
|
75 |
-
# Execute SQL on button click
|
76 |
btn_execute.click(
|
77 |
fn=execute_query,
|
78 |
inputs=sql_out,
|
|
|
|
|
1 |
import json
|
2 |
import gradio as gr
|
3 |
import duckdb
|
4 |
|
5 |
+
# Load the Parquet dataset path
|
6 |
+
dataset_path = 'sample_contract_df.parquet' # Update with your Parquet file path
|
7 |
|
8 |
+
# Load the dataset schema with DuckDB
|
9 |
+
def load_dataset_schema():
|
10 |
con = duckdb.connect()
|
11 |
con.execute(f"CREATE VIEW contract_data AS SELECT * FROM '{dataset_path}'")
|
12 |
schema = con.execute("DESCRIBE contract_data").fetchdf()
|
|
|
15 |
|
16 |
# Generate SQL based on schema and user query
|
17 |
def generate_sql_query(features, query):
|
18 |
+
# This simple example constructs an SQL condition directly, adapt for complex queries if needed
|
19 |
+
sql_query = f"SELECT * FROM contract_data WHERE {query}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
return sql_query
|
21 |
|
22 |
# Execute the SQL query and display results
|
|
|
25 |
con.execute(f"CREATE VIEW contract_data AS SELECT * FROM '{dataset_path}'")
|
26 |
result_df = con.execute(sql_query).fetchdf()
|
27 |
con.close()
|
28 |
+
return result_df.to_markdown() # Display result as markdown
|
29 |
|
30 |
# Gradio app UI
|
31 |
with gr.Blocks() as demo:
|
32 |
gr.Markdown("""
|
33 |
# Local Parquet SQL Query App
|
34 |
+
Query and explore data in `sample_contract_df.parquet` using DuckDB and SQL queries.
|
35 |
""")
|
36 |
|
37 |
+
# Load dataset schema and convert it to JSON for display
|
38 |
+
schema = load_dataset_schema()
|
39 |
+
schema_json = json.dumps(schema, indent=2)
|
40 |
+
features = gr.Code(label="Dataset Schema", value=schema_json, language="json")
|
41 |
|
42 |
+
# User input components
|
43 |
query = gr.Textbox(label="Natural Language Query", placeholder="Enter a condition, e.g., 'amount > 1000'")
|
44 |
sql_out = gr.Code(label="Generated SQL Query", language="sql")
|
45 |
results_out = gr.Markdown(label="Query Results")
|
46 |
|
47 |
# Buttons to generate and execute SQL
|
48 |
+
btn_generate = gr.Button("Generate SQL")
|
49 |
+
btn_execute = gr.Button("Execute Query")
|
|
|
50 |
|
51 |
+
# Set up click events with correct inputs and outputs
|
52 |
btn_generate.click(
|
53 |
fn=generate_sql_query,
|
54 |
+
inputs=[features, query], # Both are Gradio components now
|
55 |
outputs=sql_out,
|
56 |
)
|
|
|
|
|
57 |
btn_execute.click(
|
58 |
fn=execute_query,
|
59 |
inputs=sql_out,
|