Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -46,6 +46,10 @@ def get_schema():
|
|
46 |
|
47 |
COLUMN_TYPES = {col['column_name']: col['column_type'] for col in get_schema()}
|
48 |
|
|
|
|
|
|
|
|
|
49 |
def load_dataset_schema():
|
50 |
con = duckdb.connect()
|
51 |
try:
|
@@ -58,8 +62,6 @@ def load_dataset_schema():
|
|
58 |
finally:
|
59 |
con.close()
|
60 |
|
61 |
-
load_dataset_schema()
|
62 |
-
|
63 |
# =========================
|
64 |
# OpenAI API Integration
|
65 |
# =========================
|
@@ -71,68 +73,40 @@ def parse_query(nl_query):
|
|
71 |
]
|
72 |
|
73 |
try:
|
74 |
-
response = openai.
|
75 |
model="gpt-4",
|
76 |
messages=messages,
|
77 |
temperature=0,
|
78 |
max_tokens=150,
|
79 |
)
|
80 |
-
sql_query = response.choices[0].message
|
81 |
return sql_query
|
82 |
except Exception as e:
|
83 |
return f"Error generating SQL query: {e}"
|
84 |
|
85 |
def detect_plot_intent(nl_query):
|
86 |
-
plot_keywords = ['plot', 'graph', 'chart', 'distribution', 'visualize'
|
87 |
return any(keyword in nl_query.lower() for keyword in plot_keywords)
|
88 |
|
89 |
-
|
90 |
-
def execute_query(sql_query):
|
91 |
-
"""
|
92 |
-
Executes the SQL query and returns the results.
|
93 |
-
"""
|
94 |
-
if sql_query.startswith("Error"):
|
95 |
-
return None, sql_query
|
96 |
-
|
97 |
-
try:
|
98 |
-
con = duckdb.connect()
|
99 |
-
con.execute(f"CREATE OR REPLACE VIEW contract_data AS SELECT * FROM '{dataset_path}'")
|
100 |
-
result_df = con.execute(sql_query).fetchdf()
|
101 |
-
con.close()
|
102 |
-
return result_df, ""
|
103 |
-
except Exception as e:
|
104 |
-
return None, f"Error executing query: {e}"
|
105 |
-
|
106 |
-
def generate_plot(nl_query, result_df):
|
107 |
-
if not detect_plot_intent(nl_query):
|
108 |
-
return None, ""
|
109 |
-
|
110 |
-
columns = result_df.columns.tolist()
|
111 |
-
if len(columns) < 2:
|
112 |
-
return None, "Not enough data to generate a plot."
|
113 |
-
|
114 |
-
if 'bar' in nl_query.lower():
|
115 |
-
fig = px.bar(result_df, x=columns[0], y=columns[1], title='Bar Chart')
|
116 |
-
elif 'line' in nl_query.lower():
|
117 |
-
fig = px.line(result_df, x=columns[0], y=columns[1], title='Line Chart')
|
118 |
-
elif 'scatter' in nl_query.lower():
|
119 |
-
fig = px.scatter(result_df, x=columns[0], y=columns[1], title='Scatter Plot')
|
120 |
-
elif 'pie' in nl_query.lower():
|
121 |
-
fig = px.pie(result_df, names=columns[0], values=columns[1], title='Pie Chart')
|
122 |
-
else:
|
123 |
-
fig = px.bar(result_df, x=columns[0], y=columns[1], title='Bar Chart')
|
124 |
-
|
125 |
-
fig.update_layout(title_x=0.5)
|
126 |
-
return fig, ""
|
127 |
-
|
128 |
# =========================
|
129 |
# Gradio Application UI
|
130 |
# =========================
|
131 |
|
132 |
-
with gr.Blocks(
|
133 |
gr.Markdown("""
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
""")
|
137 |
|
138 |
with gr.Row():
|
@@ -142,74 +116,39 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue")) as demo:
|
|
142 |
placeholder='e.g., "What are the total awards over 1M in California?"',
|
143 |
lines=1
|
144 |
)
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
with gr.Column(scale=2):
|
157 |
-
results_out = gr.DataFrame(
|
158 |
-
label="Results"
|
159 |
-
)
|
160 |
-
|
161 |
-
# Instructions
|
162 |
-
gr.Markdown("""
|
163 |
-
## Instructions
|
164 |
-
1. **Enter a query**: Type in a natural language query in the textbox.
|
165 |
-
2. **Use Example Queries**: Click on any example query button above.
|
166 |
-
3. **Generate SQL and Plot**: Click "Execute" to see results.
|
167 |
-
""")
|
168 |
|
169 |
# =========================
|
170 |
-
#
|
171 |
# =========================
|
172 |
|
173 |
-
def
|
174 |
-
if not nl_query.strip():
|
175 |
-
return gr.update(visible=True, value="Please enter a query."), None, None
|
176 |
-
|
177 |
sql_query = parse_query(nl_query)
|
178 |
-
|
179 |
-
return gr.update(visible=True, value=sql_query), None, None
|
180 |
-
|
181 |
-
result_df, error_msg = execute_query(sql_query)
|
182 |
-
if error_msg:
|
183 |
-
return gr.update(visible=True, value=error_msg), None, None
|
184 |
-
|
185 |
-
fig, plot_error = generate_plot(nl_query, result_df)
|
186 |
-
if plot_error:
|
187 |
-
return gr.update(visible=True, value=plot_error), None, None
|
188 |
-
|
189 |
-
return gr.update(visible=False, value=""), result_df, fig
|
190 |
-
|
191 |
-
def on_example_click(query_text):
|
192 |
-
sql_query = parse_query(query_text)
|
193 |
-
result_df, error_msg = execute_query(sql_query)
|
194 |
-
if error_msg:
|
195 |
-
return sql_query, None, None, error_msg
|
196 |
-
fig, plot_error = generate_plot(query_text, result_df)
|
197 |
-
return sql_query, result_df, fig, plot_error if plot_error else ""
|
198 |
-
|
199 |
-
btn_example1.click(lambda: on_example_click("Show awards over 1M in CA"), outputs=[results_out, error_out])
|
200 |
-
btn_example2.click(lambda: on_example_click("List all contracts in New York"), outputs=[results_out, error_out])
|
201 |
-
btn_example3.click(lambda: on_example_click("Show top 5 departments by award amount"), outputs=[results_out, error_out])
|
202 |
-
btn_example4.click(lambda: on_example_click("SELECT * from contract_data LIMIT 10;"), outputs=[results_out, error_out])
|
203 |
-
|
204 |
-
query.submit(
|
205 |
-
fn=on_query_submit,
|
206 |
-
inputs=query,
|
207 |
-
outputs=[error_out, results_out]
|
208 |
-
)
|
209 |
|
210 |
-
|
211 |
-
|
212 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
|
214 |
-
|
215 |
-
|
|
|
46 |
|
47 |
COLUMN_TYPES = {col['column_name']: col['column_type'] for col in get_schema()}
|
48 |
|
49 |
+
# =========================
|
50 |
+
# Database Interaction
|
51 |
+
# =========================
|
52 |
+
|
53 |
def load_dataset_schema():
|
54 |
con = duckdb.connect()
|
55 |
try:
|
|
|
62 |
finally:
|
63 |
con.close()
|
64 |
|
|
|
|
|
65 |
# =========================
|
66 |
# OpenAI API Integration
|
67 |
# =========================
|
|
|
73 |
]
|
74 |
|
75 |
try:
|
76 |
+
response = openai.ChatCompletion.create(
|
77 |
model="gpt-4",
|
78 |
messages=messages,
|
79 |
temperature=0,
|
80 |
max_tokens=150,
|
81 |
)
|
82 |
+
sql_query = response.choices[0].message['content'].strip()
|
83 |
return sql_query
|
84 |
except Exception as e:
|
85 |
return f"Error generating SQL query: {e}"
|
86 |
|
87 |
def detect_plot_intent(nl_query):
|
88 |
+
plot_keywords = ['plot', 'graph', 'chart', 'distribution', 'visualize']
|
89 |
return any(keyword in nl_query.lower() for keyword in plot_keywords)
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
# =========================
|
92 |
# Gradio Application UI
|
93 |
# =========================
|
94 |
|
95 |
+
with gr.Blocks() as demo:
|
96 |
gr.Markdown("""
|
97 |
+
# Parquet SQL Query and Plotting App
|
98 |
+
|
99 |
+
**Query and visualize data** in `sample_contract_df.parquet`
|
100 |
+
|
101 |
+
## Instructions
|
102 |
+
|
103 |
+
1. **Describe the data you want**: e.g., `Show awards over 1M in CA`
|
104 |
+
2. **Use Example Queries**: Click on any example query button below to execute.
|
105 |
+
3. **Generate SQL**: Or, enter your own query and click "Generate SQL" to see the SQL query.
|
106 |
+
4. **Execute Query**: Run the query to view results and plots.
|
107 |
+
5. **Dataset Schema**: See available columns and types in the "Schema" tab.
|
108 |
+
|
109 |
+
## Example Queries
|
110 |
""")
|
111 |
|
112 |
with gr.Row():
|
|
|
116 |
placeholder='e.g., "What are the total awards over 1M in California?"',
|
117 |
lines=1
|
118 |
)
|
119 |
+
# Button to generate the SQL query from NL
|
120 |
+
btn_generate_sql = gr.Button("Generate SQL Query")
|
121 |
+
# Textbox to display generated SQL
|
122 |
+
sql_query_out = gr.Textbox(label="Generated SQL Query", interactive=False)
|
123 |
+
# Execute button
|
124 |
+
btn_execute_query = gr.Button("Execute Query")
|
125 |
+
error_out = gr.Markdown("", visible=False)
|
126 |
+
|
127 |
+
# Results and Plot output
|
128 |
+
results_out = gr.DataFrame(label="Query Results")
|
129 |
+
plot_out = gr.Plot(label="Plot")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
# =========================
|
132 |
+
# Event Functions
|
133 |
# =========================
|
134 |
|
135 |
+
def generate_sql(nl_query):
|
|
|
|
|
|
|
136 |
sql_query = parse_query(nl_query)
|
137 |
+
return sql_query
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
+
def execute_sql_query(sql_query):
|
140 |
+
try:
|
141 |
+
con = duckdb.connect()
|
142 |
+
con.execute(f"CREATE OR REPLACE VIEW contract_data AS SELECT * FROM '{dataset_path}'")
|
143 |
+
result_df = con.execute(sql_query).fetchdf()
|
144 |
+
con.close()
|
145 |
+
return result_df, ""
|
146 |
+
except Exception as e:
|
147 |
+
return None, f"Error executing query: {e}"
|
148 |
+
|
149 |
+
# Button click event handlers
|
150 |
+
btn_generate_sql.click(fn=generate_sql, inputs=query, outputs=sql_query_out)
|
151 |
+
btn_execute_query.click(fn=execute_sql_query, inputs=sql_query_out, outputs=[results_out, error_out])
|
152 |
|
153 |
+
# Launch the Gradio App
|
154 |
+
demo.launch()
|