Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,92 +1,390 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import
|
4 |
-
|
5 |
-
from
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
#
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
def
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import threading
|
2 |
+
import queue
|
3 |
+
import time
|
4 |
+
import logging
|
5 |
+
from typing import List, Dict, Any, Optional
|
6 |
+
import random
|
7 |
+
|
8 |
+
# Logging config for traceability
|
9 |
+
logging.basicConfig(level=logging.INFO, format='[%(asctime)s] %(levelname)s:%(message)s')
|
10 |
+
|
11 |
+
# ----------------------------
|
12 |
+
# 1. Memory Management Module
|
13 |
+
# ----------------------------
|
14 |
+
|
15 |
+
class MemoryManager:
|
16 |
+
def __init__(self):
|
17 |
+
self.short_term_memory = []
|
18 |
+
self.long_term_memory = []
|
19 |
+
|
20 |
+
def store_short_term(self, data: Any):
|
21 |
+
logging.info("Storing to short-term memory")
|
22 |
+
self.short_term_memory.append(data)
|
23 |
+
|
24 |
+
def store_long_term(self, data: Any):
|
25 |
+
logging.info("Storing to long-term memory")
|
26 |
+
self.long_term_memory.append(data)
|
27 |
+
|
28 |
+
def retrieve(self, query: str) -> List[Any]:
|
29 |
+
# Placeholder: sophisticated semantic retrieval (e.g. embeddings)
|
30 |
+
logging.info(f"Retrieving memory for query: {query}")
|
31 |
+
results = [item for item in self.long_term_memory if query.lower() in str(item).lower()]
|
32 |
+
return results
|
33 |
+
|
34 |
+
# ----------------------------
|
35 |
+
# 2. Multi-modal Processing Module
|
36 |
+
# ----------------------------
|
37 |
+
|
38 |
+
class MultiModalProcessor:
|
39 |
+
def process_text(self, text: str) -> Dict:
|
40 |
+
logging.info("Processing text input")
|
41 |
+
# Integrate NLP pipelines here (e.g., HuggingFace transformers)
|
42 |
+
return {"text": text.upper(), "tokens": text.split()}
|
43 |
+
|
44 |
+
def process_image(self, image_data: bytes) -> Dict:
|
45 |
+
logging.info("Processing image input")
|
46 |
+
# Placeholder for image feature extraction (e.g., CLIP, OpenCV)
|
47 |
+
return {"image_features": "image_vector_representation"}
|
48 |
+
|
49 |
+
def process_audio(self, audio_data: bytes) -> Dict:
|
50 |
+
logging.info("Processing audio input")
|
51 |
+
# Placeholder for speech-to-text or audio embeddings
|
52 |
+
return {"audio_features": "audio_vector_representation"}
|
53 |
+
|
54 |
+
def process_video(self, video_data: bytes) -> Dict:
|
55 |
+
logging.info("Processing video input")
|
56 |
+
# Placeholder for video frame extraction + feature analysis
|
57 |
+
return {"video_features": "video_vector_representation"}
|
58 |
+
|
59 |
+
# ----------------------------
|
60 |
+
# 3. Recursive Reasoning & Self-Prompting Agent
|
61 |
+
# ----------------------------
|
62 |
+
|
63 |
+
class RecursiveReasoningAgent:
|
64 |
+
def generate_prompts(self, context: Dict) -> List[str]:
|
65 |
+
logging.info("Generating reasoning prompts")
|
66 |
+
# Chain-of-thought prompt generation example
|
67 |
+
base_query = context.get("text", "No context")
|
68 |
+
return [f"Consider the implications of {base_query}",
|
69 |
+
f"What assumptions are made about {base_query}?",
|
70 |
+
f"How would changing {base_query} affect the outcome?"]
|
71 |
+
|
72 |
+
def refine_hypotheses(self, hypotheses: List[str]) -> str:
|
73 |
+
logging.info("Refining hypotheses")
|
74 |
+
# Simple heuristic: pick the longest hypothesis
|
75 |
+
if hypotheses:
|
76 |
+
return max(hypotheses, key=len)
|
77 |
+
return "No hypotheses to refine"
|
78 |
+
|
79 |
+
# ----------------------------
|
80 |
+
# 4. Goal Management and Planning
|
81 |
+
# ----------------------------
|
82 |
+
|
83 |
+
class GoalPlanner:
|
84 |
+
def __init__(self):
|
85 |
+
self.goals_queue = queue.Queue()
|
86 |
+
|
87 |
+
def add_goal(self, goal: str):
|
88 |
+
logging.info(f"Adding goal: {goal}")
|
89 |
+
self.goals_queue.put(goal)
|
90 |
+
|
91 |
+
def get_next_goal(self) -> Optional[str]:
|
92 |
+
try:
|
93 |
+
goal = self.goals_queue.get_nowait()
|
94 |
+
logging.info(f"Next goal: {goal}")
|
95 |
+
return goal
|
96 |
+
except queue.Empty:
|
97 |
+
logging.info("No goals remaining")
|
98 |
+
return None
|
99 |
+
|
100 |
+
# ----------------------------
|
101 |
+
# 5. Reinforcement Learning Module (Skeleton)
|
102 |
+
# ----------------------------
|
103 |
+
|
104 |
+
class ReinforcementLearningAgent:
|
105 |
+
def __init__(self):
|
106 |
+
self.q_table = {} # state-action value store
|
107 |
+
|
108 |
+
def select_action(self, state: str) -> str:
|
109 |
+
# Simple random policy placeholder
|
110 |
+
action = random.choice(["explore", "exploit", "wait"])
|
111 |
+
logging.info(f"Selected action '{action}' for state '{state}'")
|
112 |
+
return action
|
113 |
+
|
114 |
+
def update_policy(self, state: str, action: str, reward: float):
|
115 |
+
# Placeholder for policy update, e.g. Q-learning
|
116 |
+
logging.info(f"Updating policy for state {state} and action {action} with reward {reward}")
|
117 |
+
|
118 |
+
# ----------------------------
|
119 |
+
# 6. Neural Architecture Search (NAS) Module
|
120 |
+
# ----------------------------
|
121 |
+
|
122 |
+
class NeuralArchitectureSearch:
|
123 |
+
def search(self) -> str:
|
124 |
+
# Placeholder for automated NAS optimization (complex in real life)
|
125 |
+
new_architecture = "NAS Architecture v" + str(random.randint(1, 10))
|
126 |
+
logging.info(f"Proposed new neural architecture: {new_architecture}")
|
127 |
+
return new_architecture
|
128 |
+
|
129 |
+
# ----------------------------
|
130 |
+
# 7. Bias Detection and Mitigation
|
131 |
+
# ----------------------------
|
132 |
+
|
133 |
+
class BiasMitigation:
|
134 |
+
def detect_bias(self, data: Any) -> bool:
|
135 |
+
# Placeholder bias detection logic
|
136 |
+
bias_found = "bias" in str(data).lower()
|
137 |
+
logging.info(f"Bias detected: {bias_found}")
|
138 |
+
return bias_found
|
139 |
+
|
140 |
+
def mitigate(self, data: Any) -> Any:
|
141 |
+
# Simple mitigation: redact or flag
|
142 |
+
if self.detect_bias(data):
|
143 |
+
return "[Content Redacted for Bias]"
|
144 |
+
return data
|
145 |
+
|
146 |
+
# ----------------------------
|
147 |
+
# 8. Multi-Agent Collaboration System
|
148 |
+
# ----------------------------
|
149 |
+
|
150 |
+
class Agent:
|
151 |
+
def __init__(self, name: str):
|
152 |
+
self.name = name
|
153 |
+
|
154 |
+
def execute(self, task: str) -> str:
|
155 |
+
logging.info(f"Agent {self.name} executing task: {task}")
|
156 |
+
return f"{self.name} completed {task}"
|
157 |
+
|
158 |
+
class MultiAgentSystem:
|
159 |
+
def __init__(self, agents: List[Agent]):
|
160 |
+
self.agents = agents
|
161 |
+
|
162 |
+
def coordinate(self, task: str) -> List[str]:
|
163 |
+
results = []
|
164 |
+
for agent in self.agents:
|
165 |
+
result = agent.execute(task)
|
166 |
+
results.append(result)
|
167 |
+
return results
|
168 |
+
|
169 |
+
# ----------------------------
|
170 |
+
# 9. Explainability Module
|
171 |
+
# ----------------------------
|
172 |
+
|
173 |
+
class Explainability:
|
174 |
+
def generate_explanation(self, decision: str) -> str:
|
175 |
+
explanation = f"Decision '{decision}' was made based on heuristic rules and data analysis."
|
176 |
+
logging.info(f"Generated explanation: {explanation}")
|
177 |
+
return explanation
|
178 |
+
|
179 |
+
# ----------------------------
|
180 |
+
# 10. Ethics and Safety Guardrails
|
181 |
+
# ----------------------------
|
182 |
+
|
183 |
+
class EthicsSafety:
|
184 |
+
def check_compliance(self, output: str) -> bool:
|
185 |
+
# Placeholder ethical compliance check
|
186 |
+
compliant = "illegal" not in output.lower()
|
187 |
+
logging.info(f"Output compliance status: {compliant}")
|
188 |
+
return compliant
|
189 |
+
|
190 |
+
def filter_output(self, output: str) -> str:
|
191 |
+
if self.check_compliance(output):
|
192 |
+
return output
|
193 |
+
return "[Output blocked due to ethical concerns]"
|
194 |
+
|
195 |
+
# ----------------------------
|
196 |
+
# 11. Plugin and API Integration
|
197 |
+
# ----------------------------
|
198 |
+
|
199 |
+
class PluginManager:
|
200 |
+
def call_plugin(self, name: str, params: Dict[str, Any]) -> Any:
|
201 |
+
logging.info(f"Calling plugin '{name}' with params {params}")
|
202 |
+
# Placeholder: invoke external API or service
|
203 |
+
return f"Plugin '{name}' response with params {params}"
|
204 |
+
|
205 |
+
# ----------------------------
|
206 |
+
# 12. Multilingual Support and Translation
|
207 |
+
# ----------------------------
|
208 |
+
|
209 |
+
class LanguageSupport:
|
210 |
+
def detect_language(self, text: str) -> str:
|
211 |
+
# Very naive detection placeholder
|
212 |
+
if any(ord(c) > 128 for c in text):
|
213 |
+
lang = "non-en"
|
214 |
+
else:
|
215 |
+
lang = "en"
|
216 |
+
logging.info(f"Detected language: {lang}")
|
217 |
+
return lang
|
218 |
+
|
219 |
+
def translate(self, text: str, target_lang: str) -> str:
|
220 |
+
logging.info(f"Translating text to {target_lang}")
|
221 |
+
# Placeholder for translation, returns original
|
222 |
+
return text
|
223 |
+
|
224 |
+
# ----------------------------
|
225 |
+
# 13. Streaming Input and Adaptation
|
226 |
+
# ----------------------------
|
227 |
+
|
228 |
+
class StreamingProcessor:
|
229 |
+
def stream_input(self, data_stream: Any):
|
230 |
+
logging.info(f"Processing streaming data: {data_stream}")
|
231 |
+
# Placeholder for real-time processing logic
|
232 |
+
|
233 |
+
# ----------------------------
|
234 |
+
# 14. User Feedback Loop
|
235 |
+
# ----------------------------
|
236 |
+
|
237 |
+
class FeedbackLoop:
|
238 |
+
def receive_feedback(self, feedback: str):
|
239 |
+
logging.info(f"Received user feedback: {feedback}")
|
240 |
+
# Placeholder: integrate feedback to improve system
|
241 |
+
|
242 |
+
# ----------------------------
|
243 |
+
# 15. Deployment Automation
|
244 |
+
# ----------------------------
|
245 |
+
|
246 |
+
class DeploymentManager:
|
247 |
+
def deploy_system(self):
|
248 |
+
logging.info("Deploying system with auto-scaling and monitoring")
|
249 |
+
# Placeholder for actual deployment steps
|
250 |
+
|
251 |
+
# ----------------------------
|
252 |
+
# 16. Security and Privacy
|
253 |
+
# ----------------------------
|
254 |
+
|
255 |
+
class SecurityPrivacyManager:
|
256 |
+
def encrypt(self, data: str) -> str:
|
257 |
+
encrypted = f"encrypted({data})"
|
258 |
+
logging.info(f"Data encrypted")
|
259 |
+
return encrypted
|
260 |
+
|
261 |
+
def anonymize(self, data: str) -> str:
|
262 |
+
anonymized = f"anonymized({data})"
|
263 |
+
logging.info(f"Data anonymized")
|
264 |
+
return anonymized
|
265 |
+
|
266 |
+
# ----------------------------
|
267 |
+
# 17. Dashboard and Monitoring
|
268 |
+
# ----------------------------
|
269 |
+
|
270 |
+
class Dashboard:
|
271 |
+
def update_status(self, status: str):
|
272 |
+
logging.info(f"Dashboard status updated: {status}")
|
273 |
+
|
274 |
+
# ----------------------------
|
275 |
+
# 18. Auto Documentation and Logging
|
276 |
+
# ----------------------------
|
277 |
+
|
278 |
+
class AutoDocumentation:
|
279 |
+
def log_event(self, event: str):
|
280 |
+
logging.info(f"Logged event: {event}")
|
281 |
+
|
282 |
+
# ----------------------------
|
283 |
+
# 19. Personality & Tone Customization
|
284 |
+
# ----------------------------
|
285 |
+
|
286 |
+
class PersonalityModule:
|
287 |
+
def set_personality(self, personality: str):
|
288 |
+
logging.info(f"Personality set to: {personality}")
|
289 |
+
|
290 |
+
# ----------------------------
|
291 |
+
# 20. Robustness & Error Handling
|
292 |
+
# ----------------------------
|
293 |
+
|
294 |
+
class RobustnessManager:
|
295 |
+
def recover_from_error(self, error: Exception):
|
296 |
+
logging.error(f"Error occurred: {error}")
|
297 |
+
logging.info("Attempting recovery procedures")
|
298 |
+
|
299 |
+
# ----------------------------
|
300 |
+
# Main OmniAIvX Orchestrator
|
301 |
+
# ----------------------------
|
302 |
+
|
303 |
+
class OmniAIvX:
|
304 |
+
def __init__(self):
|
305 |
+
self.memory = MemoryManager()
|
306 |
+
self.multi_modal = MultiModalProcessor()
|
307 |
+
self.reasoning_agent = RecursiveReasoningAgent()
|
308 |
+
self.goal_planner = GoalPlanner()
|
309 |
+
self.rl_agent = ReinforcementLearningAgent()
|
310 |
+
self.nas = NeuralArchitectureSearch()
|
311 |
+
self.bias_mitigation = BiasMitigation()
|
312 |
+
self.multi_agent_system = MultiAgentSystem([Agent("RL-Agent"), Agent("NAS-Agent")])
|
313 |
+
self.explainability = Explainability()
|
314 |
+
self.ethics = EthicsSafety()
|
315 |
+
self.plugin_manager = PluginManager()
|
316 |
+
self.language_support = LanguageSupport()
|
317 |
+
self.streaming_processor = StreamingProcessor()
|
318 |
+
self.feedback_loop = FeedbackLoop()
|
319 |
+
self.deployment_manager = DeploymentManager()
|
320 |
+
self.security_privacy = SecurityPrivacyManager()
|
321 |
+
self.dashboard = Dashboard()
|
322 |
+
self.auto_doc = AutoDocumentation()
|
323 |
+
self.personality = PersonalityModule()
|
324 |
+
self.robustness = RobustnessManager()
|
325 |
+
self.task_queue = queue.Queue()
|
326 |
+
|
327 |
+
def process_input(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
|
328 |
+
self.auto_doc.log_event("Input received")
|
329 |
+
processed_data = {}
|
330 |
+
|
331 |
+
# Language detection and translation
|
332 |
+
if "text" in input_data:
|
333 |
+
lang = self.language_support.detect_language(input_data["text"])
|
334 |
+
translated_text = self.language_support.translate(input_data["text"], "en")
|
335 |
+
processed_data["text"] = self.multi_modal.process_text(translated_text)
|
336 |
+
|
337 |
+
if "image" in input_data:
|
338 |
+
processed_data["image"] = self.multi_modal.process_image(input_data["image"])
|
339 |
+
|
340 |
+
if "audio" in input_data:
|
341 |
+
processed_data["audio"] = self.multi_modal.process_audio(input_data["audio"])
|
342 |
+
|
343 |
+
if "video" in input_data:
|
344 |
+
processed_data["video"] = self.multi_modal.process_video(input_data["video"])
|
345 |
+
|
346 |
+
self.memory.store_short_term(processed_data)
|
347 |
+
self.dashboard.update_status("Input processed")
|
348 |
+
return processed_data
|
349 |
+
|
350 |
+
def run_reasoning_cycle(self, context: Dict[str, Any]) -> Dict[str, Any]:
|
351 |
+
prompts = self.reasoning_agent.generate_prompts(context)
|
352 |
+
refined = self.reasoning_agent.refine_hypotheses(prompts)
|
353 |
+
goal = self.goal_planner.get_next_goal()
|
354 |
+
if not goal:
|
355 |
+
return {"message": "No goals to process."}
|
356 |
+
|
357 |
+
action = self.rl_agent.select_action(goal)
|
358 |
+
self.rl_agent.update_policy(goal, action, reward=1.0) # dummy reward
|
359 |
+
multi_agent_results = self.multi_agent_system.coordinate(goal)
|
360 |
+
explanation = self.explainability.generate_explanation(action)
|
361 |
+
safe_output = self.ethics.filter_output(action)
|
362 |
+
|
363 |
+
self.auto_doc.log_event(f"Goal '{goal}' executed with action '{action}'")
|
364 |
+
self.dashboard.update_status(f"Goal executed: {goal}")
|
365 |
+
|
366 |
+
return {
|
367 |
+
"action": safe_output,
|
368 |
+
"explanation": explanation,
|
369 |
+
"multi_agent_results": multi_agent_results,
|
370 |
+
"refined_prompt": refined
|
371 |
+
}
|
372 |
+
|
373 |
+
def update_architecture(self):
|
374 |
+
new_arch = self.nas.search()
|
375 |
+
self.auto_doc.log_event(f"Neural architecture updated to {new_arch}")
|
376 |
+
self.dashboard.update_status("Neural architecture updated")
|
377 |
+
|
378 |
+
def receive_feedback(self, feedback: str):
|
379 |
+
self.feedback_loop.receive_feedback(feedback)
|
380 |
+
self.auto_doc.log_event("User feedback processed")
|
381 |
+
|
382 |
+
def deploy(self):
|
383 |
+
self.deployment_manager.deploy_system()
|
384 |
+
self.auto_doc.log_event("System deployed")
|
385 |
+
|
386 |
+
def encrypt_and_store(self, data: str):
|
387 |
+
encrypted = self.security_privacy.encrypt(data)
|
388 |
+
self.memory.store_long_term(encrypted)
|
389 |
+
|
390 |
+
def anonymize_and_store(self, data:
|