Leonydis137 commited on
Commit
4a95ed8
·
verified ·
1 Parent(s): 34bb175

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +390 -92
app.py CHANGED
@@ -1,92 +1,390 @@
1
- # autonomous_ai/app.py
2
-
3
- import gradio as gr
4
- from transformers import AutoTokenizer, AutoModelForCausalLM
5
- from utils import (
6
- add_to_memory,
7
- retrieve_memories,
8
- reset_memory,
9
- log_chat,
10
- generate_suggestions
11
- )
12
-
13
- # === Chat Model ===
14
- CHAT_MODEL = "HuggingFaceTB/SmolLM2-1.7B-Instruct"
15
- chat_tokenizer = AutoTokenizer.from_pretrained(CHAT_MODEL)
16
- chat_model = AutoModelForCausalLM.from_pretrained(CHAT_MODEL).eval()
17
-
18
-
19
- def generate_response(user_input, history, temperature, max_tokens, persona):
20
- add_to_memory(user_input)
21
- memories = retrieve_memories(user_input)
22
- context = "\n".join(f"Memory: {m}" for m in memories)
23
-
24
- prefix = f"You are {persona}, a helpful AI assistant.\n"
25
- prompt = prefix
26
- if context:
27
- prompt += context + "\n"
28
- for u, a in history:
29
- prompt += f"User: {u}\nAssistant: {a}\n"
30
- prompt += f"User: {user_input}\nAssistant:"
31
-
32
- inputs = chat_tokenizer(prompt, return_tensors="pt", truncation=True, padding=True)
33
- output = chat_model.generate(
34
- **inputs,
35
- max_new_tokens=max_tokens,
36
- temperature=temperature,
37
- do_sample=True,
38
- top_p=0.9,
39
- pad_token_id=chat_tokenizer.eos_token_id,
40
- eos_token_id=chat_tokenizer.eos_token_id
41
- )
42
-
43
- reply = chat_tokenizer.decode(
44
- output[0][inputs['input_ids'].shape[-1]:],
45
- skip_special_tokens=True
46
- ).strip()
47
-
48
- history.append((user_input, reply))
49
- add_to_memory(reply)
50
- log_chat(user_input, reply, persona)
51
-
52
- return "", history
53
-
54
- def reset_all():
55
- reset_memory()
56
- return [], []
57
-
58
-
59
- def feedback_suggestions(feedback_text):
60
- return generate_suggestions(feedback_text)
61
-
62
-
63
- with gr.Blocks(title="Autonomous AI vX") as demo:
64
- gr.Markdown("# 🤖 Autonomous AI vX (CPU Only)")
65
-
66
- with gr.Tab("Chat"):
67
- chatbot = gr.Chatbot(label="Memory-Enabled Chat")
68
- user_input = gr.Textbox(label="Message", placeholder="Ask something...", lines=2)
69
- persona = gr.Dropdown([
70
- "a curious child", "a formal tutor", "a sarcastic genius", "a helpful assistant"
71
- ], value="a helpful assistant", label="Assistant Persona")
72
- temperature = gr.Slider(0.1, 1.2, value=0.7, label="Creativity")
73
- max_tokens = gr.Slider(50, 300, value=150, label="Response Length")
74
- send = gr.Button("Send")
75
- clear = gr.Button("Reset All Memory")
76
-
77
- state = gr.State([])
78
-
79
- send.click(generate_response,
80
- inputs=[user_input, state, temperature, max_tokens, persona],
81
- outputs=[user_input, chatbot])
82
- clear.click(reset_all, outputs=[chatbot, state])
83
-
84
- with gr.Tab("Feedback"):
85
- feedback_input = gr.Textbox(label="Your Feedback", lines=3)
86
- suggest_btn = gr.Button("Get Improvement Suggestions")
87
- suggestions = gr.Textbox(label="AI Suggestions", lines=6)
88
-
89
- suggest_btn.click(fn=feedback_suggestions, inputs=feedback_input, outputs=suggestions)
90
-
91
- if __name__ == "__main__":
92
- demo.launch(share=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import threading
2
+ import queue
3
+ import time
4
+ import logging
5
+ from typing import List, Dict, Any, Optional
6
+ import random
7
+
8
+ # Logging config for traceability
9
+ logging.basicConfig(level=logging.INFO, format='[%(asctime)s] %(levelname)s:%(message)s')
10
+
11
+ # ----------------------------
12
+ # 1. Memory Management Module
13
+ # ----------------------------
14
+
15
+ class MemoryManager:
16
+ def __init__(self):
17
+ self.short_term_memory = []
18
+ self.long_term_memory = []
19
+
20
+ def store_short_term(self, data: Any):
21
+ logging.info("Storing to short-term memory")
22
+ self.short_term_memory.append(data)
23
+
24
+ def store_long_term(self, data: Any):
25
+ logging.info("Storing to long-term memory")
26
+ self.long_term_memory.append(data)
27
+
28
+ def retrieve(self, query: str) -> List[Any]:
29
+ # Placeholder: sophisticated semantic retrieval (e.g. embeddings)
30
+ logging.info(f"Retrieving memory for query: {query}")
31
+ results = [item for item in self.long_term_memory if query.lower() in str(item).lower()]
32
+ return results
33
+
34
+ # ----------------------------
35
+ # 2. Multi-modal Processing Module
36
+ # ----------------------------
37
+
38
+ class MultiModalProcessor:
39
+ def process_text(self, text: str) -> Dict:
40
+ logging.info("Processing text input")
41
+ # Integrate NLP pipelines here (e.g., HuggingFace transformers)
42
+ return {"text": text.upper(), "tokens": text.split()}
43
+
44
+ def process_image(self, image_data: bytes) -> Dict:
45
+ logging.info("Processing image input")
46
+ # Placeholder for image feature extraction (e.g., CLIP, OpenCV)
47
+ return {"image_features": "image_vector_representation"}
48
+
49
+ def process_audio(self, audio_data: bytes) -> Dict:
50
+ logging.info("Processing audio input")
51
+ # Placeholder for speech-to-text or audio embeddings
52
+ return {"audio_features": "audio_vector_representation"}
53
+
54
+ def process_video(self, video_data: bytes) -> Dict:
55
+ logging.info("Processing video input")
56
+ # Placeholder for video frame extraction + feature analysis
57
+ return {"video_features": "video_vector_representation"}
58
+
59
+ # ----------------------------
60
+ # 3. Recursive Reasoning & Self-Prompting Agent
61
+ # ----------------------------
62
+
63
+ class RecursiveReasoningAgent:
64
+ def generate_prompts(self, context: Dict) -> List[str]:
65
+ logging.info("Generating reasoning prompts")
66
+ # Chain-of-thought prompt generation example
67
+ base_query = context.get("text", "No context")
68
+ return [f"Consider the implications of {base_query}",
69
+ f"What assumptions are made about {base_query}?",
70
+ f"How would changing {base_query} affect the outcome?"]
71
+
72
+ def refine_hypotheses(self, hypotheses: List[str]) -> str:
73
+ logging.info("Refining hypotheses")
74
+ # Simple heuristic: pick the longest hypothesis
75
+ if hypotheses:
76
+ return max(hypotheses, key=len)
77
+ return "No hypotheses to refine"
78
+
79
+ # ----------------------------
80
+ # 4. Goal Management and Planning
81
+ # ----------------------------
82
+
83
+ class GoalPlanner:
84
+ def __init__(self):
85
+ self.goals_queue = queue.Queue()
86
+
87
+ def add_goal(self, goal: str):
88
+ logging.info(f"Adding goal: {goal}")
89
+ self.goals_queue.put(goal)
90
+
91
+ def get_next_goal(self) -> Optional[str]:
92
+ try:
93
+ goal = self.goals_queue.get_nowait()
94
+ logging.info(f"Next goal: {goal}")
95
+ return goal
96
+ except queue.Empty:
97
+ logging.info("No goals remaining")
98
+ return None
99
+
100
+ # ----------------------------
101
+ # 5. Reinforcement Learning Module (Skeleton)
102
+ # ----------------------------
103
+
104
+ class ReinforcementLearningAgent:
105
+ def __init__(self):
106
+ self.q_table = {} # state-action value store
107
+
108
+ def select_action(self, state: str) -> str:
109
+ # Simple random policy placeholder
110
+ action = random.choice(["explore", "exploit", "wait"])
111
+ logging.info(f"Selected action '{action}' for state '{state}'")
112
+ return action
113
+
114
+ def update_policy(self, state: str, action: str, reward: float):
115
+ # Placeholder for policy update, e.g. Q-learning
116
+ logging.info(f"Updating policy for state {state} and action {action} with reward {reward}")
117
+
118
+ # ----------------------------
119
+ # 6. Neural Architecture Search (NAS) Module
120
+ # ----------------------------
121
+
122
+ class NeuralArchitectureSearch:
123
+ def search(self) -> str:
124
+ # Placeholder for automated NAS optimization (complex in real life)
125
+ new_architecture = "NAS Architecture v" + str(random.randint(1, 10))
126
+ logging.info(f"Proposed new neural architecture: {new_architecture}")
127
+ return new_architecture
128
+
129
+ # ----------------------------
130
+ # 7. Bias Detection and Mitigation
131
+ # ----------------------------
132
+
133
+ class BiasMitigation:
134
+ def detect_bias(self, data: Any) -> bool:
135
+ # Placeholder bias detection logic
136
+ bias_found = "bias" in str(data).lower()
137
+ logging.info(f"Bias detected: {bias_found}")
138
+ return bias_found
139
+
140
+ def mitigate(self, data: Any) -> Any:
141
+ # Simple mitigation: redact or flag
142
+ if self.detect_bias(data):
143
+ return "[Content Redacted for Bias]"
144
+ return data
145
+
146
+ # ----------------------------
147
+ # 8. Multi-Agent Collaboration System
148
+ # ----------------------------
149
+
150
+ class Agent:
151
+ def __init__(self, name: str):
152
+ self.name = name
153
+
154
+ def execute(self, task: str) -> str:
155
+ logging.info(f"Agent {self.name} executing task: {task}")
156
+ return f"{self.name} completed {task}"
157
+
158
+ class MultiAgentSystem:
159
+ def __init__(self, agents: List[Agent]):
160
+ self.agents = agents
161
+
162
+ def coordinate(self, task: str) -> List[str]:
163
+ results = []
164
+ for agent in self.agents:
165
+ result = agent.execute(task)
166
+ results.append(result)
167
+ return results
168
+
169
+ # ----------------------------
170
+ # 9. Explainability Module
171
+ # ----------------------------
172
+
173
+ class Explainability:
174
+ def generate_explanation(self, decision: str) -> str:
175
+ explanation = f"Decision '{decision}' was made based on heuristic rules and data analysis."
176
+ logging.info(f"Generated explanation: {explanation}")
177
+ return explanation
178
+
179
+ # ----------------------------
180
+ # 10. Ethics and Safety Guardrails
181
+ # ----------------------------
182
+
183
+ class EthicsSafety:
184
+ def check_compliance(self, output: str) -> bool:
185
+ # Placeholder ethical compliance check
186
+ compliant = "illegal" not in output.lower()
187
+ logging.info(f"Output compliance status: {compliant}")
188
+ return compliant
189
+
190
+ def filter_output(self, output: str) -> str:
191
+ if self.check_compliance(output):
192
+ return output
193
+ return "[Output blocked due to ethical concerns]"
194
+
195
+ # ----------------------------
196
+ # 11. Plugin and API Integration
197
+ # ----------------------------
198
+
199
+ class PluginManager:
200
+ def call_plugin(self, name: str, params: Dict[str, Any]) -> Any:
201
+ logging.info(f"Calling plugin '{name}' with params {params}")
202
+ # Placeholder: invoke external API or service
203
+ return f"Plugin '{name}' response with params {params}"
204
+
205
+ # ----------------------------
206
+ # 12. Multilingual Support and Translation
207
+ # ----------------------------
208
+
209
+ class LanguageSupport:
210
+ def detect_language(self, text: str) -> str:
211
+ # Very naive detection placeholder
212
+ if any(ord(c) > 128 for c in text):
213
+ lang = "non-en"
214
+ else:
215
+ lang = "en"
216
+ logging.info(f"Detected language: {lang}")
217
+ return lang
218
+
219
+ def translate(self, text: str, target_lang: str) -> str:
220
+ logging.info(f"Translating text to {target_lang}")
221
+ # Placeholder for translation, returns original
222
+ return text
223
+
224
+ # ----------------------------
225
+ # 13. Streaming Input and Adaptation
226
+ # ----------------------------
227
+
228
+ class StreamingProcessor:
229
+ def stream_input(self, data_stream: Any):
230
+ logging.info(f"Processing streaming data: {data_stream}")
231
+ # Placeholder for real-time processing logic
232
+
233
+ # ----------------------------
234
+ # 14. User Feedback Loop
235
+ # ----------------------------
236
+
237
+ class FeedbackLoop:
238
+ def receive_feedback(self, feedback: str):
239
+ logging.info(f"Received user feedback: {feedback}")
240
+ # Placeholder: integrate feedback to improve system
241
+
242
+ # ----------------------------
243
+ # 15. Deployment Automation
244
+ # ----------------------------
245
+
246
+ class DeploymentManager:
247
+ def deploy_system(self):
248
+ logging.info("Deploying system with auto-scaling and monitoring")
249
+ # Placeholder for actual deployment steps
250
+
251
+ # ----------------------------
252
+ # 16. Security and Privacy
253
+ # ----------------------------
254
+
255
+ class SecurityPrivacyManager:
256
+ def encrypt(self, data: str) -> str:
257
+ encrypted = f"encrypted({data})"
258
+ logging.info(f"Data encrypted")
259
+ return encrypted
260
+
261
+ def anonymize(self, data: str) -> str:
262
+ anonymized = f"anonymized({data})"
263
+ logging.info(f"Data anonymized")
264
+ return anonymized
265
+
266
+ # ----------------------------
267
+ # 17. Dashboard and Monitoring
268
+ # ----------------------------
269
+
270
+ class Dashboard:
271
+ def update_status(self, status: str):
272
+ logging.info(f"Dashboard status updated: {status}")
273
+
274
+ # ----------------------------
275
+ # 18. Auto Documentation and Logging
276
+ # ----------------------------
277
+
278
+ class AutoDocumentation:
279
+ def log_event(self, event: str):
280
+ logging.info(f"Logged event: {event}")
281
+
282
+ # ----------------------------
283
+ # 19. Personality & Tone Customization
284
+ # ----------------------------
285
+
286
+ class PersonalityModule:
287
+ def set_personality(self, personality: str):
288
+ logging.info(f"Personality set to: {personality}")
289
+
290
+ # ----------------------------
291
+ # 20. Robustness & Error Handling
292
+ # ----------------------------
293
+
294
+ class RobustnessManager:
295
+ def recover_from_error(self, error: Exception):
296
+ logging.error(f"Error occurred: {error}")
297
+ logging.info("Attempting recovery procedures")
298
+
299
+ # ----------------------------
300
+ # Main OmniAIvX Orchestrator
301
+ # ----------------------------
302
+
303
+ class OmniAIvX:
304
+ def __init__(self):
305
+ self.memory = MemoryManager()
306
+ self.multi_modal = MultiModalProcessor()
307
+ self.reasoning_agent = RecursiveReasoningAgent()
308
+ self.goal_planner = GoalPlanner()
309
+ self.rl_agent = ReinforcementLearningAgent()
310
+ self.nas = NeuralArchitectureSearch()
311
+ self.bias_mitigation = BiasMitigation()
312
+ self.multi_agent_system = MultiAgentSystem([Agent("RL-Agent"), Agent("NAS-Agent")])
313
+ self.explainability = Explainability()
314
+ self.ethics = EthicsSafety()
315
+ self.plugin_manager = PluginManager()
316
+ self.language_support = LanguageSupport()
317
+ self.streaming_processor = StreamingProcessor()
318
+ self.feedback_loop = FeedbackLoop()
319
+ self.deployment_manager = DeploymentManager()
320
+ self.security_privacy = SecurityPrivacyManager()
321
+ self.dashboard = Dashboard()
322
+ self.auto_doc = AutoDocumentation()
323
+ self.personality = PersonalityModule()
324
+ self.robustness = RobustnessManager()
325
+ self.task_queue = queue.Queue()
326
+
327
+ def process_input(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
328
+ self.auto_doc.log_event("Input received")
329
+ processed_data = {}
330
+
331
+ # Language detection and translation
332
+ if "text" in input_data:
333
+ lang = self.language_support.detect_language(input_data["text"])
334
+ translated_text = self.language_support.translate(input_data["text"], "en")
335
+ processed_data["text"] = self.multi_modal.process_text(translated_text)
336
+
337
+ if "image" in input_data:
338
+ processed_data["image"] = self.multi_modal.process_image(input_data["image"])
339
+
340
+ if "audio" in input_data:
341
+ processed_data["audio"] = self.multi_modal.process_audio(input_data["audio"])
342
+
343
+ if "video" in input_data:
344
+ processed_data["video"] = self.multi_modal.process_video(input_data["video"])
345
+
346
+ self.memory.store_short_term(processed_data)
347
+ self.dashboard.update_status("Input processed")
348
+ return processed_data
349
+
350
+ def run_reasoning_cycle(self, context: Dict[str, Any]) -> Dict[str, Any]:
351
+ prompts = self.reasoning_agent.generate_prompts(context)
352
+ refined = self.reasoning_agent.refine_hypotheses(prompts)
353
+ goal = self.goal_planner.get_next_goal()
354
+ if not goal:
355
+ return {"message": "No goals to process."}
356
+
357
+ action = self.rl_agent.select_action(goal)
358
+ self.rl_agent.update_policy(goal, action, reward=1.0) # dummy reward
359
+ multi_agent_results = self.multi_agent_system.coordinate(goal)
360
+ explanation = self.explainability.generate_explanation(action)
361
+ safe_output = self.ethics.filter_output(action)
362
+
363
+ self.auto_doc.log_event(f"Goal '{goal}' executed with action '{action}'")
364
+ self.dashboard.update_status(f"Goal executed: {goal}")
365
+
366
+ return {
367
+ "action": safe_output,
368
+ "explanation": explanation,
369
+ "multi_agent_results": multi_agent_results,
370
+ "refined_prompt": refined
371
+ }
372
+
373
+ def update_architecture(self):
374
+ new_arch = self.nas.search()
375
+ self.auto_doc.log_event(f"Neural architecture updated to {new_arch}")
376
+ self.dashboard.update_status("Neural architecture updated")
377
+
378
+ def receive_feedback(self, feedback: str):
379
+ self.feedback_loop.receive_feedback(feedback)
380
+ self.auto_doc.log_event("User feedback processed")
381
+
382
+ def deploy(self):
383
+ self.deployment_manager.deploy_system()
384
+ self.auto_doc.log_event("System deployed")
385
+
386
+ def encrypt_and_store(self, data: str):
387
+ encrypted = self.security_privacy.encrypt(data)
388
+ self.memory.store_long_term(encrypted)
389
+
390
+ def anonymize_and_store(self, data: