Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,36 +1,24 @@
|
|
1 |
from fastapi import FastAPI
|
2 |
import gradio as gr
|
3 |
-
from orchestrator import run_agents
|
4 |
-
from memory import init_memory
|
5 |
-
|
6 |
-
app = FastAPI()
|
7 |
-
memory = init_memory()
|
8 |
-
|
9 |
-
def agent_interface(goal):
|
10 |
-
return run_agents(goal, memory)
|
11 |
-
|
12 |
-
gr_interface = gr.Interface(
|
13 |
-
fn=agent_interface,
|
14 |
-
inputs=gr.Textbox(lines=2, placeholder="Describe your task...", label="Your Task"),
|
15 |
-
outputs=gr.Textbox(lines=20, label="Multi-Agent Output"),
|
16 |
-
title="🧠 Multi-Agent Autonomous AI System",
|
17 |
-
description="Planner → Executor → Critic | Contextual Memory | Logs | Expandable AI System"
|
18 |
-
)
|
19 |
-
|
20 |
-
gr.mount_gradio_app(app, gr_interface, path="/gradio")
|
21 |
-
|
22 |
-
@app.get("/")
|
23 |
-
def root():
|
24 |
-
return {"message": "Multi-Agent AI system with logging and memory."}
|
25 |
-
''',
|
26 |
-
|
27 |
from src.core.cognitive_engine import CognitiveEngine
|
28 |
from src.utils.hf_packager import HFSpacePackager
|
29 |
-
|
30 |
-
import
|
|
|
|
|
|
|
|
|
31 |
import os
|
32 |
import psutil
|
33 |
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
# Initialize components
|
36 |
cognitive_engine = CognitiveEngine()
|
@@ -78,6 +66,40 @@ def run_cycle(task_description):
|
|
78 |
""
|
79 |
)
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
# Get system resources
|
82 |
def get_resource_usage():
|
83 |
return {
|
@@ -101,12 +123,40 @@ def submit_manual_code(code):
|
|
101 |
except Exception as e:
|
102 |
return f"⚠️ Error: {str(e)}", code
|
103 |
|
|
|
104 |
with gr.Blocks(css="static/style.css", theme=gr.themes.Soft()) as demo:
|
105 |
knowledge = load_knowledge()
|
106 |
|
107 |
-
gr.Markdown("# 🤖
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
-
with gr.Tab("
|
110 |
with gr.Row():
|
111 |
with gr.Column():
|
112 |
task_input = gr.Textbox(
|
@@ -129,7 +179,7 @@ with gr.Blocks(css="static/style.css", theme=gr.themes.Soft()) as demo:
|
|
129 |
interactive=True
|
130 |
)
|
131 |
|
132 |
-
with gr.Tab("Manual Code
|
133 |
with gr.Row():
|
134 |
with gr.Column():
|
135 |
manual_code = gr.Code(
|
@@ -155,10 +205,11 @@ with gr.Blocks(css="static/style.css", theme=gr.themes.Soft()) as demo:
|
|
155 |
value=get_task_history(),
|
156 |
interactive=False
|
157 |
)
|
158 |
-
gr.Markdown("###
|
159 |
-
|
160 |
-
|
161 |
-
|
|
|
162 |
)
|
163 |
refresh_knowledge = gr.Button("🔁 Refresh Knowledge")
|
164 |
|
@@ -186,152 +237,16 @@ with gr.Blocks(css="static/style.css", theme=gr.themes.Soft()) as demo:
|
|
186 |
refresh_knowledge.click(
|
187 |
lambda: load_knowledge(),
|
188 |
inputs=[],
|
189 |
-
outputs=
|
190 |
)
|
191 |
|
192 |
-
|
193 |
-
|
194 |
-
server_name="0.0.0.0",
|
195 |
-
server_port=7860,
|
196 |
-
show_api=True
|
197 |
-
)
|
198 |
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
from agents.critic import review_result
|
203 |
-
from memory import add_to_memory, search_memory
|
204 |
-
import uuid
|
205 |
-
from datetime import datetime
|
206 |
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
log = f"[{timestamp}] Session {session_id}: Goal: {goal}\\n"
|
212 |
-
history = search_memory(goal, memory)
|
213 |
-
context = "\\n".join(history[:3]) if history else "No relevant memory found."
|
214 |
-
|
215 |
-
plan = plan_task(goal, memory)
|
216 |
-
add_to_memory(f"[{session_id}] 🧠 Context: {context}", memory)
|
217 |
-
add_to_memory(f"[{session_id}] 🗂 Plan: {plan}", memory)
|
218 |
-
|
219 |
-
outputs = []
|
220 |
-
for step in plan:
|
221 |
-
result = execute_step(step)
|
222 |
-
add_to_memory(f"[{session_id}] 🔧 Executor ran: {step} -> {result}", memory)
|
223 |
-
|
224 |
-
review = review_result(step, result)
|
225 |
-
add_to_memory(f"[{session_id}] 🔍 Critic: {review}", memory)
|
226 |
-
|
227 |
-
step_log = f"🔹 Step: {step}\\n🛠 Result: {result}\\n🧠 Review: {review}\\n"
|
228 |
-
log += step_log + "\\n"
|
229 |
-
outputs.append(step_log)
|
230 |
-
|
231 |
-
with open("log.txt", "a") as f:
|
232 |
-
f.write(log + "\\n")
|
233 |
-
|
234 |
-
return "\\n".join(outputs)
|
235 |
-
''',
|
236 |
-
|
237 |
-
"memory.py": '''
|
238 |
-
from sentence_transformers import SentenceTransformer
|
239 |
-
import numpy as np
|
240 |
-
import faiss
|
241 |
-
import json
|
242 |
-
import os
|
243 |
-
|
244 |
-
model = SentenceTransformer("all-MiniLM-L6-v2")
|
245 |
-
MEMORY_LOG = "memory_log.json"
|
246 |
-
|
247 |
-
def init_memory():
|
248 |
-
dim = 384
|
249 |
-
index = faiss.IndexFlatL2(dim)
|
250 |
-
memory = {"index": index, "texts": []}
|
251 |
-
if os.path.exists(MEMORY_LOG):
|
252 |
-
with open(MEMORY_LOG, "r") as f:
|
253 |
-
memory["texts"] = json.load(f)
|
254 |
-
vectors = np.array([model.encode([text])[0] for text in memory["texts"]])
|
255 |
-
if len(vectors) > 0:
|
256 |
-
memory["index"].add(vectors)
|
257 |
-
return memory
|
258 |
-
|
259 |
-
def add_to_memory(text, memory):
|
260 |
-
vec = model.encode([text])[0]
|
261 |
-
memory["index"].add(np.array([vec]))
|
262 |
-
memory["texts"].append(text)
|
263 |
-
with open(MEMORY_LOG, "w") as f:
|
264 |
-
json.dump(memory["texts"], f)
|
265 |
-
|
266 |
-
def search_memory(query, memory, k=5):
|
267 |
-
vec = model.encode([query])[0]
|
268 |
-
D, I = memory["index"].search(np.array([vec]), k)
|
269 |
-
return [memory["texts"][i] for i in I[0] if i < len(memory["texts"])]
|
270 |
-
''',
|
271 |
-
|
272 |
-
"agents/planner.py": '''
|
273 |
-
def plan_task(goal, memory):
|
274 |
-
plan = []
|
275 |
-
if "website" in goal:
|
276 |
-
plan.extend([
|
277 |
-
"Create basic HTML structure",
|
278 |
-
"Add styling with CSS",
|
279 |
-
"Add interactivity with JavaScript",
|
280 |
-
"Review and test website"
|
281 |
-
])
|
282 |
-
else:
|
283 |
-
plan.extend([
|
284 |
-
f"Understand the goal: {goal}",
|
285 |
-
"Find the best method to solve it",
|
286 |
-
"Execute and gather result"
|
287 |
-
])
|
288 |
-
return plan
|
289 |
-
''',
|
290 |
-
|
291 |
-
"agents/executor.py": '''
|
292 |
-
import subprocess
|
293 |
-
|
294 |
-
def execute_step(step):
|
295 |
-
step_lower = step.lower()
|
296 |
-
if "html" in step_lower:
|
297 |
-
return "<html><body>Hello Multi-Agent World!</body></html>"
|
298 |
-
elif "calculate" in step_lower:
|
299 |
-
try:
|
300 |
-
expression = step_lower.replace("calculate", "").strip()
|
301 |
-
return str(eval(expression))
|
302 |
-
except:
|
303 |
-
return "Calculation error."
|
304 |
-
elif "python" in step_lower or "code" in step_lower:
|
305 |
-
try:
|
306 |
-
code = step.split("```python")[1].split("```")[0] if "```python" in step else step
|
307 |
-
result = subprocess.check_output(["python3", "-c", code], stderr=subprocess.STDOUT, timeout=5)
|
308 |
-
return result.decode()
|
309 |
-
except Exception as e:
|
310 |
-
return f"Error running Python code: {e}"
|
311 |
-
else:
|
312 |
-
return f"No defined execution path for: {step}"
|
313 |
-
''',
|
314 |
-
|
315 |
-
"agents/critic.py": '''
|
316 |
-
def review_result(step, result):
|
317 |
-
if not result or "error" in result.lower():
|
318 |
-
return f"❌ Step failed or incomplete: {step}. Result: {result[:80]}"
|
319 |
-
if len(result) < 10:
|
320 |
-
return f"⚠️ Result seems too short for step: {step}."
|
321 |
-
return f"✅ Step successful. Result preview: {result[:80]}"
|
322 |
-
''',
|
323 |
-
|
324 |
-
"requirements.txt": '''
|
325 |
-
fastapi
|
326 |
-
uvicorn
|
327 |
-
gradio
|
328 |
-
faiss-cpu
|
329 |
-
sentence-transformers
|
330 |
-
numpy
|
331 |
-
''',
|
332 |
-
|
333 |
-
".huggingface.yaml": '''
|
334 |
-
sdk: gradio
|
335 |
-
sdk_version: 3.50.2
|
336 |
-
app_file: app.py
|
337 |
-
''',
|
|
|
1 |
from fastapi import FastAPI
|
2 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from src.core.cognitive_engine import CognitiveEngine
|
4 |
from src.utils.hf_packager import HFSpacePackager
|
5 |
+
from agents.planner import plan_task
|
6 |
+
from agents.executor import execute_step
|
7 |
+
from agents.critic import review_result
|
8 |
+
from memory import init_memory, add_to_memory, search_memory
|
9 |
+
import uuid
|
10 |
+
from datetime import datetime
|
11 |
import os
|
12 |
import psutil
|
13 |
import json
|
14 |
+
import time
|
15 |
+
import subprocess
|
16 |
+
from sentence_transformers import SentenceTransformer
|
17 |
+
import numpy as np
|
18 |
+
import faiss
|
19 |
+
|
20 |
+
app = FastAPI()
|
21 |
+
memory = init_memory()
|
22 |
|
23 |
# Initialize components
|
24 |
cognitive_engine = CognitiveEngine()
|
|
|
66 |
""
|
67 |
)
|
68 |
|
69 |
+
# Multi-agent system
|
70 |
+
def run_agents(goal, memory, session_id=None):
|
71 |
+
session_id = session_id or str(uuid.uuid4())[:8]
|
72 |
+
timestamp = datetime.now().isoformat(timespec="seconds")
|
73 |
+
|
74 |
+
log = f"[{timestamp}] Session {session_id}: Goal: {goal}\n"
|
75 |
+
history = search_memory(goal, memory)
|
76 |
+
context = "\n".join(history[:3]) if history else "No relevant memory found."
|
77 |
+
|
78 |
+
plan = plan_task(goal, memory)
|
79 |
+
add_to_memory(f"[{session_id}] 🧠 Context: {context}", memory)
|
80 |
+
add_to_memory(f"[{session_id}] 🗂 Plan: {plan}", memory)
|
81 |
+
|
82 |
+
outputs = []
|
83 |
+
for step in plan:
|
84 |
+
result = execute_step(step)
|
85 |
+
add_to_memory(f"[{session_id}] 🔧 Executor ran: {step} -> {result}", memory)
|
86 |
+
|
87 |
+
review = review_result(step, result)
|
88 |
+
add_to_memory(f"[{session_id}] 🔍 Critic: {review}", memory)
|
89 |
+
|
90 |
+
step_log = f"🔹 Step: {step}\n🛠 Result: {result}\n🧠 Review: {review}\n"
|
91 |
+
log += step_log + "\n"
|
92 |
+
outputs.append(step_log)
|
93 |
+
|
94 |
+
with open("log.txt", "a") as f:
|
95 |
+
f.write(log + "\n")
|
96 |
+
|
97 |
+
return "\n".join(outputs)
|
98 |
+
|
99 |
+
# Agent interface
|
100 |
+
def agent_interface(goal):
|
101 |
+
return run_agents(goal, memory)
|
102 |
+
|
103 |
# Get system resources
|
104 |
def get_resource_usage():
|
105 |
return {
|
|
|
123 |
except Exception as e:
|
124 |
return f"⚠️ Error: {str(e)}", code
|
125 |
|
126 |
+
# Create Gradio interface
|
127 |
with gr.Blocks(css="static/style.css", theme=gr.themes.Soft()) as demo:
|
128 |
knowledge = load_knowledge()
|
129 |
|
130 |
+
gr.Markdown("# 🤖 Multi-Agent Autonomous AI System")
|
131 |
+
|
132 |
+
with gr.Tab("Multi-Agent Task"):
|
133 |
+
goal_input = gr.Textbox(
|
134 |
+
label="Describe your task",
|
135 |
+
placeholder="What do you want to accomplish?",
|
136 |
+
lines=3
|
137 |
+
)
|
138 |
+
agent_output = gr.Textbox(
|
139 |
+
label="Multi-Agent Process",
|
140 |
+
lines=10,
|
141 |
+
interactive=False
|
142 |
+
)
|
143 |
+
run_agents_btn = gr.Button("🚀 Run Agents", variant="primary")
|
144 |
+
|
145 |
+
run_agents_btn.click(
|
146 |
+
agent_interface,
|
147 |
+
inputs=[goal_input],
|
148 |
+
outputs=[agent_output]
|
149 |
+
)
|
150 |
+
|
151 |
+
gr.Markdown("### Agent Architecture")
|
152 |
+
gr.Markdown("""
|
153 |
+
- **🧠 Planner**: Creates task execution plan
|
154 |
+
- **🛠 Executor**: Carries out each step
|
155 |
+
- **🔍 Critic**: Reviews results and provides feedback
|
156 |
+
- **💾 Memory**: Maintains context-aware knowledge
|
157 |
+
""")
|
158 |
|
159 |
+
with gr.Tab("Cognitive Engine"):
|
160 |
with gr.Row():
|
161 |
with gr.Column():
|
162 |
task_input = gr.Textbox(
|
|
|
179 |
interactive=True
|
180 |
)
|
181 |
|
182 |
+
with gr.Tab("Manual Code"):
|
183 |
with gr.Row():
|
184 |
with gr.Column():
|
185 |
manual_code = gr.Code(
|
|
|
205 |
value=get_task_history(),
|
206 |
interactive=False
|
207 |
)
|
208 |
+
gr.Markdown("### Memory Log")
|
209 |
+
memory_display = gr.Textbox(
|
210 |
+
label="Agent Memory",
|
211 |
+
value="\n".join(memory["texts"][-5:]),
|
212 |
+
interactive=False
|
213 |
)
|
214 |
refresh_knowledge = gr.Button("🔁 Refresh Knowledge")
|
215 |
|
|
|
237 |
refresh_knowledge.click(
|
238 |
lambda: load_knowledge(),
|
239 |
inputs=[],
|
240 |
+
outputs=task_history
|
241 |
)
|
242 |
|
243 |
+
# Mount Gradio app to FastAPI
|
244 |
+
gr.mount_gradio_app(app, demo, path="/")
|
|
|
|
|
|
|
|
|
245 |
|
246 |
+
@app.get("/status")
|
247 |
+
def status():
|
248 |
+
return {"status": "active", "agents": ["planner", "executor", "critic"]}
|
|
|
|
|
|
|
|
|
249 |
|
250 |
+
if __name__ == "__main__":
|
251 |
+
import uvicorn
|
252 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|