Leonydis137 commited on
Commit
f277a38
·
verified ·
1 Parent(s): 8ff35fb

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -479
app.py CHANGED
@@ -1,485 +1,24 @@
1
- import threading
2
- import queue
3
- import time
4
- import logging
5
- from typing import List, Dict, Any, Optional
6
- import random
7
  import gradio as gr
8
- from transformers import AutoTokenizer, AutoModelForCausalLM
9
- import json
10
- from pathlib import Path
11
- from datetime import datetime
12
 
13
- MODEL_NAME = "HuggingFaceTB/SmolLM2-1.7B-Instruct"
14
- tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
15
- model = AutoModelForCausalLM.from_pretrained(MODEL_NAME).to("cpu").eval()
16
 
17
- CHANGELOG_FILE = Path("changelog.json")
18
- CHATLOG_FILE = Path("chatlog.json")
19
 
20
- def generate_reply(user_input, chat_history, temperature, max_tokens):
21
- prompt = "You are a helpful AI assistant.\n"
22
- for user_msg, bot_msg in chat_history:
23
- prompt += f"User: {user_msg}\nAssistant: {bot_msg}\n"
24
- prompt += f"User: {user_input}\nAssistant:"
 
 
25
 
26
- inputs = tokenizer(prompt, return_tensors="pt", padding=True)
27
- outputs = model.generate(
28
- **inputs,
29
- max_new_tokens=max_tokens,
30
- temperature=temperature,
31
- do_sample=True,
32
- top_p=0.9,
33
- pad_token_id=tokenizer.eos_token_id or tokenizer.pad_token_id,
34
- eos_token_id=tokenizer.eos_token_id,
35
- )
36
- reply = tokenizer.decode(outputs[0][inputs['input_ids'].shape[-1]:], skip_special_tokens=True).strip()
37
- chat_history.append((user_input, reply))
38
 
39
- # Save chat log after each exchange
40
- save_chat_log(chat_history)
41
- return "", chat_history
42
-
43
- def save_chat_log(chat_history):
44
- data = {
45
- "timestamp": datetime.now().isoformat(),
46
- "chat": chat_history,
47
- }
48
- if CHATLOG_FILE.exists():
49
- old_data = json.loads(CHATLOG_FILE.read_text())
50
- else:
51
- old_data = []
52
- old_data.append(data)
53
- CHATLOG_FILE.write_text(json.dumps(old_data, indent=2))
54
-
55
- def generate_suggestions(feedback):
56
- # Simple mock suggestions based on feedback input
57
- # Replace with real model inference if desired
58
- suggestions = [
59
- f"Improve clarity on: {feedback[:50]}...",
60
- "Add context awareness for better follow-up answers.",
61
- "Enhance error handling for invalid inputs.",
62
- ]
63
- # Save suggestions to changelog file
64
- save_changelog(suggestions)
65
- return "\n- " + "\n- ".join(suggestions)
66
-
67
- def save_changelog(suggestions):
68
- data = {
69
- "timestamp": datetime.now().isoformat(),
70
- "suggestions": suggestions,
71
- }
72
- if CHANGELOG_FILE.exists():
73
- old_data = json.loads(CHANGELOG_FILE.read_text())
74
- else:
75
- old_data = []
76
- old_data.append(data)
77
- CHANGELOG_FILE.write_text(json.dumps(old_data, indent=2))
78
-
79
- with gr.Blocks(title="Autonomous AI Minimal with Self-Improve") as demo:
80
- gr.Markdown("# 🤖 Autonomous AI with Feedback & Logging")
81
-
82
- with gr.Tab("Chat"):
83
- chatbot = gr.Chatbot(label="Chat")
84
- user_input = gr.Textbox(placeholder="Type your message here...", lines=2, label="Your Message")
85
- temperature = gr.Slider(0.1, 1.2, value=0.7, step=0.05, label="Temperature")
86
- max_tokens = gr.Slider(50, 300, value=150, step=25, label="Max Tokens")
87
- send_btn = gr.Button("Send")
88
- reset_btn = gr.Button("Reset")
89
-
90
- state = gr.State([])
91
-
92
- send_btn.click(generate_reply, inputs=[user_input, state, temperature, max_tokens], outputs=[user_input, chatbot])
93
- reset_btn.click(lambda: [], None, chatbot)
94
- reset_btn.click(lambda: [], None, state)
95
-
96
- with gr.Tab("Self-Improve"):
97
- feedback = gr.Textbox(label="Enter feedback or observations", lines=3)
98
- suggest_btn = gr.Button("Generate Suggestions")
99
- suggestions = gr.Textbox(label="Improvement Suggestions", interactive=False, lines=6)
100
-
101
- suggest_btn.click(generate_suggestions, inputs=feedback, outputs=suggestions)
102
-
103
- # Logging config for traceability
104
- logging.basicConfig(level=logging.INFO, format='[%(asctime)s] %(levelname)s:%(message)s')
105
-
106
- # ----------------------------
107
- # 1. Memory Management Module
108
- # ----------------------------
109
-
110
- class MemoryManager:
111
- def __init__(self):
112
- self.short_term_memory = []
113
- self.long_term_memory = []
114
-
115
- def store_short_term(self, data: Any):
116
- logging.info("Storing to short-term memory")
117
- self.short_term_memory.append(data)
118
-
119
- def store_long_term(self, data: Any):
120
- logging.info("Storing to long-term memory")
121
- self.long_term_memory.append(data)
122
-
123
- def retrieve(self, query: str) -> List[Any]:
124
- # Placeholder: sophisticated semantic retrieval (e.g. embeddings)
125
- logging.info(f"Retrieving memory for query: {query}")
126
- results = [item for item in self.long_term_memory if query.lower() in str(item).lower()]
127
- return results
128
-
129
- # ----------------------------
130
- # 2. Multi-modal Processing Module
131
- # ----------------------------
132
-
133
- class MultiModalProcessor:
134
- def process_text(self, text: str) -> Dict:
135
- logging.info("Processing text input")
136
- # Integrate NLP pipelines here (e.g., HuggingFace transformers)
137
- return {"text": text.upper(), "tokens": text.split()}
138
-
139
- def process_image(self, image_data: bytes) -> Dict:
140
- logging.info("Processing image input")
141
- # Placeholder for image feature extraction (e.g., CLIP, OpenCV)
142
- return {"image_features": "image_vector_representation"}
143
-
144
- def process_audio(self, audio_data: bytes) -> Dict:
145
- logging.info("Processing audio input")
146
- # Placeholder for speech-to-text or audio embeddings
147
- return {"audio_features": "audio_vector_representation"}
148
-
149
- def process_video(self, video_data: bytes) -> Dict:
150
- logging.info("Processing video input")
151
- # Placeholder for video frame extraction + feature analysis
152
- return {"video_features": "video_vector_representation"}
153
-
154
- # ----------------------------
155
- # 3. Recursive Reasoning & Self-Prompting Agent
156
- # ----------------------------
157
-
158
- class RecursiveReasoningAgent:
159
- def generate_prompts(self, context: Dict) -> List[str]:
160
- logging.info("Generating reasoning prompts")
161
- # Chain-of-thought prompt generation example
162
- base_query = context.get("text", "No context")
163
- return [f"Consider the implications of {base_query}",
164
- f"What assumptions are made about {base_query}?",
165
- f"How would changing {base_query} affect the outcome?"]
166
-
167
- def refine_hypotheses(self, hypotheses: List[str]) -> str:
168
- logging.info("Refining hypotheses")
169
- # Simple heuristic: pick the longest hypothesis
170
- if hypotheses:
171
- return max(hypotheses, key=len)
172
- return "No hypotheses to refine"
173
-
174
- # ----------------------------
175
- # 4. Goal Management and Planning
176
- # ----------------------------
177
-
178
- class GoalPlanner:
179
- def __init__(self):
180
- self.goals_queue = queue.Queue()
181
-
182
- def add_goal(self, goal: str):
183
- logging.info(f"Adding goal: {goal}")
184
- self.goals_queue.put(goal)
185
-
186
- def get_next_goal(self) -> Optional[str]:
187
- try:
188
- goal = self.goals_queue.get_nowait()
189
- logging.info(f"Next goal: {goal}")
190
- return goal
191
- except queue.Empty:
192
- logging.info("No goals remaining")
193
- return None
194
-
195
- # ----------------------------
196
- # 5. Reinforcement Learning Module (Skeleton)
197
- # ----------------------------
198
-
199
- class ReinforcementLearningAgent:
200
- def __init__(self):
201
- self.q_table = {} # state-action value store
202
-
203
- def select_action(self, state: str) -> str:
204
- # Simple random policy placeholder
205
- action = random.choice(["explore", "exploit", "wait"])
206
- logging.info(f"Selected action '{action}' for state '{state}'")
207
- return action
208
-
209
- def update_policy(self, state: str, action: str, reward: float):
210
- # Placeholder for policy update, e.g. Q-learning
211
- logging.info(f"Updating policy for state {state} and action {action} with reward {reward}")
212
-
213
- # ----------------------------
214
- # 6. Neural Architecture Search (NAS) Module
215
- # ----------------------------
216
-
217
- class NeuralArchitectureSearch:
218
- def search(self) -> str:
219
- # Placeholder for automated NAS optimization (complex in real life)
220
- new_architecture = "NAS Architecture v" + str(random.randint(1, 10))
221
- logging.info(f"Proposed new neural architecture: {new_architecture}")
222
- return new_architecture
223
-
224
- # ----------------------------
225
- # 7. Bias Detection and Mitigation
226
- # ----------------------------
227
-
228
- class BiasMitigation:
229
- def detect_bias(self, data: Any) -> bool:
230
- # Placeholder bias detection logic
231
- bias_found = "bias" in str(data).lower()
232
- logging.info(f"Bias detected: {bias_found}")
233
- return bias_found
234
-
235
- def mitigate(self, data: Any) -> Any:
236
- # Simple mitigation: redact or flag
237
- if self.detect_bias(data):
238
- return "[Content Redacted for Bias]"
239
- return data
240
-
241
- # ----------------------------
242
- # 8. Multi-Agent Collaboration System
243
- # ----------------------------
244
-
245
- class Agent:
246
- def __init__(self, name: str):
247
- self.name = name
248
-
249
- def execute(self, task: str) -> str:
250
- logging.info(f"Agent {self.name} executing task: {task}")
251
- return f"{self.name} completed {task}"
252
-
253
- class MultiAgentSystem:
254
- def __init__(self, agents: List[Agent]):
255
- self.agents = agents
256
-
257
- def coordinate(self, task: str) -> List[str]:
258
- results = []
259
- for agent in self.agents:
260
- result = agent.execute(task)
261
- results.append(result)
262
- return results
263
-
264
- # ----------------------------
265
- # 9. Explainability Module
266
- # ----------------------------
267
-
268
- class Explainability:
269
- def generate_explanation(self, decision: str) -> str:
270
- explanation = f"Decision '{decision}' was made based on heuristic rules and data analysis."
271
- logging.info(f"Generated explanation: {explanation}")
272
- return explanation
273
-
274
- # ----------------------------
275
- # 10. Ethics and Safety Guardrails
276
- # ----------------------------
277
-
278
- class EthicsSafety:
279
- def check_compliance(self, output: str) -> bool:
280
- # Placeholder ethical compliance check
281
- compliant = "illegal" not in output.lower()
282
- logging.info(f"Output compliance status: {compliant}")
283
- return compliant
284
-
285
- def filter_output(self, output: str) -> str:
286
- if self.check_compliance(output):
287
- return output
288
- return "[Output blocked due to ethical concerns]"
289
-
290
- # ----------------------------
291
- # 11. Plugin and API Integration
292
- # ----------------------------
293
-
294
- class PluginManager:
295
- def call_plugin(self, name: str, params: Dict[str, Any]) -> Any:
296
- logging.info(f"Calling plugin '{name}' with params {params}")
297
- # Placeholder: invoke external API or service
298
- return f"Plugin '{name}' response with params {params}"
299
-
300
- # ----------------------------
301
- # 12. Multilingual Support and Translation
302
- # ----------------------------
303
-
304
- class LanguageSupport:
305
- def detect_language(self, text: str) -> str:
306
- # Very naive detection placeholder
307
- if any(ord(c) > 128 for c in text):
308
- lang = "non-en"
309
- else:
310
- lang = "en"
311
- logging.info(f"Detected language: {lang}")
312
- return lang
313
-
314
- def translate(self, text: str, target_lang: str) -> str:
315
- logging.info(f"Translating text to {target_lang}")
316
- # Placeholder for translation, returns original
317
- return text
318
-
319
- # ----------------------------
320
- # 13. Streaming Input and Adaptation
321
- # ----------------------------
322
-
323
- class StreamingProcessor:
324
- def stream_input(self, data_stream: Any):
325
- logging.info(f"Processing streaming data: {data_stream}")
326
- # Placeholder for real-time processing logic
327
-
328
- # ----------------------------
329
- # 14. User Feedback Loop
330
- # ----------------------------
331
-
332
- class FeedbackLoop:
333
- def receive_feedback(self, feedback: str):
334
- logging.info(f"Received user feedback: {feedback}")
335
- # Placeholder: integrate feedback to improve system
336
-
337
- # ----------------------------
338
- # 15. Deployment Automation
339
- # ----------------------------
340
-
341
- class DeploymentManager:
342
- def deploy_system(self):
343
- logging.info("Deploying system with auto-scaling and monitoring")
344
- # Placeholder for actual deployment steps
345
-
346
- # ----------------------------
347
- # 16. Security and Privacy
348
- # ----------------------------
349
-
350
- class SecurityPrivacyManager:
351
- def encrypt(self, data: str) -> str:
352
- encrypted = f"encrypted({data})"
353
- logging.info(f"Data encrypted")
354
- return encrypted
355
-
356
- def anonymize(self, data: str) -> str:
357
- anonymized = f"anonymized({data})"
358
- logging.info(f"Data anonymized")
359
- return anonymized
360
-
361
- # ----------------------------
362
- # 17. Dashboard and Monitoring
363
- # ----------------------------
364
-
365
- class Dashboard:
366
- def update_status(self, status: str):
367
- logging.info(f"Dashboard status updated: {status}")
368
-
369
- # ----------------------------
370
- # 18. Auto Documentation and Logging
371
- # ----------------------------
372
-
373
- class AutoDocumentation:
374
- def log_event(self, event: str):
375
- logging.info(f"Logged event: {event}")
376
-
377
- # ----------------------------
378
- # 19. Personality & Tone Customization
379
- # ----------------------------
380
-
381
- class PersonalityModule:
382
- def set_personality(self, personality: str):
383
- logging.info(f"Personality set to: {personality}")
384
-
385
- # ----------------------------
386
- # 20. Robustness & Error Handling
387
- # ----------------------------
388
-
389
- class RobustnessManager:
390
- def recover_from_error(self, error: Exception):
391
- logging.error(f"Error occurred: {error}")
392
- logging.info("Attempting recovery procedures")
393
-
394
- # ----------------------------
395
- # Main OmniAIvX Orchestrator
396
- # ----------------------------
397
-
398
- class OmniAIvX:
399
- def __init__(self):
400
- self.memory = MemoryManager()
401
- self.multi_modal = MultiModalProcessor()
402
- self.reasoning_agent = RecursiveReasoningAgent()
403
- self.goal_planner = GoalPlanner()
404
- self.rl_agent = ReinforcementLearningAgent()
405
- self.nas = NeuralArchitectureSearch()
406
- self.bias_mitigation = BiasMitigation()
407
- self.multi_agent_system = MultiAgentSystem([Agent("RL-Agent"), Agent("NAS-Agent")])
408
- self.explainability = Explainability()
409
- self.ethics = EthicsSafety()
410
- self.plugin_manager = PluginManager()
411
- self.language_support = LanguageSupport()
412
- self.streaming_processor = StreamingProcessor()
413
- self.feedback_loop = FeedbackLoop()
414
- self.deployment_manager = DeploymentManager()
415
- self.security_privacy = SecurityPrivacyManager()
416
- self.dashboard = Dashboard()
417
- self.auto_doc = AutoDocumentation()
418
- self.personality = PersonalityModule()
419
- self.robustness = RobustnessManager()
420
- self.task_queue = queue.Queue()
421
-
422
- def process_input(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
423
- self.auto_doc.log_event("Input received")
424
- processed_data = {}
425
-
426
- # Language detection and translation
427
- if "text" in input_data:
428
- lang = self.language_support.detect_language(input_data["text"])
429
- translated_text = self.language_support.translate(input_data["text"], "en")
430
- processed_data["text"] = self.multi_modal.process_text(translated_text)
431
-
432
- if "image" in input_data:
433
- processed_data["image"] = self.multi_modal.process_image(input_data["image"])
434
-
435
- if "audio" in input_data:
436
- processed_data["audio"] = self.multi_modal.process_audio(input_data["audio"])
437
-
438
- if "video" in input_data:
439
- processed_data["video"] = self.multi_modal.process_video(input_data["video"])
440
-
441
- self.memory.store_short_term(processed_data)
442
- self.dashboard.update_status("Input processed")
443
- return processed_data
444
-
445
- def run_reasoning_cycle(self, context: Dict[str, Any]) -> Dict[str, Any]:
446
- prompts = self.reasoning_agent.generate_prompts(context)
447
- refined = self.reasoning_agent.refine_hypotheses(prompts)
448
- goal = self.goal_planner.get_next_goal()
449
- if not goal:
450
- return {"message": "No goals to process."}
451
-
452
- action = self.rl_agent.select_action(goal)
453
- self.rl_agent.update_policy(goal, action, reward=1.0) # dummy reward
454
- multi_agent_results = self.multi_agent_system.coordinate(goal)
455
- explanation = self.explainability.generate_explanation(action)
456
- safe_output = self.ethics.filter_output(action)
457
-
458
- self.auto_doc.log_event(f"Goal '{goal}' executed with action '{action}'")
459
- self.dashboard.update_status(f"Goal executed: {goal}")
460
-
461
- return {
462
- "action": safe_output,
463
- "explanation": explanation,
464
- "multi_agent_results": multi_agent_results,
465
- "refined_prompt": refined
466
- }
467
-
468
- def update_architecture(self):
469
- new_arch = self.nas.search()
470
- self.auto_doc.log_event(f"Neural architecture updated to {new_arch}")
471
- self.dashboard.update_status("Neural architecture updated")
472
-
473
- def receive_feedback(self, feedback: str):
474
- self.feedback_loop.receive_feedback(feedback)
475
- self.auto_doc.log_event("User feedback processed")
476
-
477
- def deploy(self):
478
- self.deployment_manager.deploy_system()
479
- self.auto_doc.log_event("System deployed")
480
-
481
- def encrypt_and_store(self, data: str):
482
- encrypted = self.security_privacy.encrypt(data)
483
- self.memory.store_long_term(encrypted)
484
- if __name__ == "__main__":
485
- demo.launch(share=True)
 
1
+ from fastapi import FastAPI
 
 
 
 
 
2
  import gradio as gr
3
+ from orchestrator import run_agents
4
+ from memory import init_memory
 
 
5
 
6
+ app = FastAPI()
7
+ memory = init_memory()
 
8
 
9
+ def agent_interface(goal):
10
+ return run_agents(goal, memory)
11
 
12
+ gr_interface = gr.Interface(
13
+ fn=agent_interface,
14
+ inputs=gr.Textbox(lines=2, placeholder="Describe your task...", label="Your Task"),
15
+ outputs=gr.Textbox(lines=20, label="Multi-Agent Output"),
16
+ title="🧠 Multi-Agent Autonomous AI System",
17
+ description="Planner → Executor → Critic | Contextual Memory | Logs | Expandable AI System"
18
+ )
19
 
20
+ gr.mount_gradio_app(app, gr_interface, path="/gradio")
 
 
 
 
 
 
 
 
 
 
 
21
 
22
+ @app.get("/")
23
+ def root():
24
+ return {"message": "Multi-Agent AI system with logging and memory."}