Leonydis137 commited on
Commit
f3bbfa6
·
verified ·
1 Parent(s): 671b1e7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -31
app.py CHANGED
@@ -1,7 +1,5 @@
1
 
2
- from fastapi import FastAPI
3
  import gradio as gr
4
- from src.core.cognitive_engine import CognitiveEngine
5
  from src.utils.hf_packager import HFSpacePackager
6
  from agents.planner import plan_task
7
  from agents.executor import execute_step
@@ -17,9 +15,38 @@ import subprocess
17
  from sentence_transformers import SentenceTransformer
18
  import numpy as np
19
  import faiss
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
 
21
  app = FastAPI()
22
- memory = init_memory()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
  # Initialize components
25
  cognitive_engine = CognitiveEngine()
@@ -245,36 +272,8 @@ with gr.Blocks(css="static/style.css", theme=gr.themes.Soft()) as demo:
245
  # Mount Gradio app to FastAPI
246
  gr.mount_gradio_app(app, demo, path="/")
247
 
248
- from fastapi import FastAPI
249
- from ctransformers import AutoModelForCausalLM
250
- from src.core.cognitive_engine import CognitiveEngine
251
- cognitive_engine = CognitiveEngine(llm_model)
252
-
253
- # Load LLM model
254
- llm_model = AutoModelForCausalLM.from_pretrained(
255
- "TheBloke/zephyr-7B-alpha-GGUF",
256
- model_file="zephyr-7b-alpha.Q4_K_M.gguf",
257
- model_type="llama",
258
- max_new_tokens=256,
259
- temperature=0.7
260
- )
261
-
262
- # Initialize FastAPI and engine
263
- app = FastAPI()
264
- cognitive_engine = CognitiveEngine(llm_model)
265
-
266
- # Routes
267
- @app.get("/status")
268
- def status():
269
- return {"status": "active", "agents": ["planner", "executor", "critic"]}
270
-
271
- @app.get("/generate")
272
- def generate(prompt: str):
273
- return {"response": llm_model(prompt)}
274
-
275
  # Test the model at startup (optional)
276
  if __name__ == "__main__":
277
  print(llm_model("Hello, how are you?"))
278
-
279
  import uvicorn
280
  uvicorn.run(app, host="0.0.0.0", port=7860)
 
1
 
 
2
  import gradio as gr
 
3
  from src.utils.hf_packager import HFSpacePackager
4
  from agents.planner import plan_task
5
  from agents.executor import execute_step
 
15
  from sentence_transformers import SentenceTransformer
16
  import numpy as np
17
  import faiss
18
+ from fastapi import FastAPI
19
+ from ctransformers import AutoModelForCausalLM
20
+ from src.core.cognitive_engine import CognitiveEngine
21
+ cognitive_engine = CognitiveEngine(llm_model)
22
+
23
+ # Load LLM model
24
+ llm_model = AutoModelForCausalLM.from_pretrained(
25
+ "TheBloke/zephyr-7B-alpha-GGUF",
26
+ model_file="zephyr-7b-alpha.Q4_K_M.gguf",
27
+ model_type="llama",
28
+ max_new_tokens=256,
29
+ temperature=0.7
30
+ )
31
 
32
+ # Initialize FastAPI and engine
33
  app = FastAPI()
34
+ cognitive_engine = CognitiveEngine(llm_model)
35
+
36
+ # Routes
37
+ @app.get("/status")
38
+ def status():
39
+ return {"status": "active", "agents": ["planner", "executor", "critic"]}
40
+
41
+ @app.get("/generate")
42
+ def generate(prompt: str):
43
+ return {"response": llm_model(prompt)}
44
+
45
+ # Test the model at startup (optional)
46
+ if __name__ == "__main__":
47
+ print(llm_model("Hello, how are you?"))
48
+ import uvicorn
49
+ uvicorn.run(app, host="0.0.0.0", port=7860)
50
 
51
  # Initialize components
52
  cognitive_engine = CognitiveEngine()
 
272
  # Mount Gradio app to FastAPI
273
  gr.mount_gradio_app(app, demo, path="/")
274
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
275
  # Test the model at startup (optional)
276
  if __name__ == "__main__":
277
  print(llm_model("Hello, how are you?"))
 
278
  import uvicorn
279
  uvicorn.run(app, host="0.0.0.0", port=7860)