|
from transformers import Wav2Vec2ForCTC, AutoProcessor |
|
import torchaudio |
|
import torch |
|
import os |
|
import librosa |
|
|
|
hf_token = os.getenv("HUGGING_FACE_HUB_TOKEN") |
|
|
|
def read_audio_data(file): |
|
speech_array, sampling_rate = torchaudio.load(file, normalize = True) |
|
return speech_array, sampling_rate |
|
|
|
def load_model(): |
|
model_id = "Lguyogiro/wav2vec2-large-mms-1b-nhi-adapterft-ilv_fold1" |
|
target_lang = "nhi" |
|
processor = AutoProcessor.from_pretrained(model_id, target_lang=target_lang, use_auth_token=hf_token) |
|
model = Wav2Vec2ForCTC.from_pretrained(model_id, target_lang=target_lang, ignore_mismatched_sizes=True, use_safetensors=True, use_auth_token=hf_token) |
|
return processor, model |
|
|
|
|
|
def inference(processor, model, audio_path): |
|
audio, sampling_rate = librosa.load(audio_path, sr=16000) |
|
inputs = processor(audio, sampling_rate=sampling_rate, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values).logits |
|
|
|
|
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return transcription |
|
|