File size: 15,118 Bytes
37b9e99
 
 
 
223340a
37b9e99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
223340a
37b9e99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
'''
Author: Qiguang Chen
Date: 2023-01-11 10:39:26
LastEditors: Qiguang Chen
LastEditTime: 2023-02-19 15:39:48
Description: all class for load data.

'''
import os
import torch
import json
from datasets import load_dataset, Dataset
from torch.utils.data import DataLoader

from common.utils import InputData

ABS_PATH=os.path.join(os.path.abspath(os.path.dirname(__file__)), "../")

class DataFactory(object):
    def __init__(self, tokenizer,use_multi_intent=False, to_lower_case=True):
        """_summary_

        Args:
            tokenizer (Tokenizer): _description_
            use_multi_intent (bool, optional): _description_. Defaults to False.
        """
        self.tokenizer = tokenizer
        self.slot_label_list = []
        self.intent_label_list = []
        self.use_multi = use_multi_intent
        self.to_lower_case = to_lower_case
        self.slot_label_dict = None
        self.intent_label_dict = None

    def __is_supported_datasets(self, dataset_name:str)->bool:
        return dataset_name.lower() in ["atis", "snips", "mix-atis", "mix-atis"]

    def load_dataset(self, dataset_config, split="train"):
        dataset_name = None
        if split not in dataset_config:
            dataset_name = dataset_config.get("dataset_name")
        elif self.__is_supported_datasets(dataset_config[split]):
            dataset_name = dataset_config[split].lower()
        if dataset_name is not None:
            return load_dataset("LightChen2333/OpenSLU", dataset_name, split=split)
        else:
            data_file = dataset_config[split]
            data_dict = {"text": [], "slot": [], "intent":[]}
            with open(data_file, encoding="utf-8") as f:
                for line in f:
                    row = json.loads(line)
                    data_dict["text"].append(row["text"])
                    data_dict["slot"].append(row["slot"])
                    data_dict["intent"].append(row["intent"])
            return Dataset.from_dict(data_dict)

    def update_label_names(self, dataset):
        for intent_labels in dataset["intent"]:
            if self.use_multi:
                intent_label = intent_labels.split("#")
            else:
                intent_label = [intent_labels]
            for x in intent_label:
                if x not in self.intent_label_list:
                    self.intent_label_list.append(x)
        for slot_label in dataset["slot"]:
            for x in slot_label:
                if x not in self.slot_label_list:
                    self.slot_label_list.append(x)
        self.intent_label_dict = {key: index for index,
                                  key in enumerate(self.intent_label_list)}
        self.slot_label_dict = {key: index for index,
                                key in enumerate(self.slot_label_list)}

    def update_vocabulary(self, dataset):
        if self.tokenizer.name_or_path in ["word_tokenizer"]:
            for data in dataset:
                self.tokenizer.add_instance(data["text"])

    @staticmethod
    def fast_align_data(text, padding_side="right"):
        for i in range(len(text.input_ids)):
            desired_output = []
            for word_id in text.word_ids(i):
                if word_id is not None:
                    start, end = text.word_to_tokens(
                        i, word_id, sequence_index=0 if padding_side == "right" else 1)
                    if start == end - 1:
                        tokens = [start]
                    else:
                        tokens = [start, end - 1]
                    if len(desired_output) == 0 or desired_output[-1] != tokens:
                        desired_output.append(tokens)
            yield desired_output

    def fast_align(self,
                   batch,
                   ignore_index=-100,
                   device="cuda",
                   config=None,
                   enable_label=True,
                   label2tensor=True):
        if self.to_lower_case:
            input_list = [[t.lower() for t in x["text"]] for x in batch]
        else:
            input_list = [x["text"] for x in batch]
        text = self.tokenizer(input_list,
                              return_tensors="pt",
                              padding=True,
                              is_split_into_words=True,
                              truncation=True,
                              **config).to(device)
        if enable_label:
            if label2tensor:

                slot_mask = torch.ones_like(text.input_ids) * ignore_index
                for i, offsets in enumerate(
                        DataFactory.fast_align_data(text, padding_side=self.tokenizer.padding_side)):
                    num = 0
                    assert len(offsets) == len(batch[i]["text"])
                    assert len(offsets) == len(batch[i]["slot"])
                    for off in offsets:
                        slot_mask[i][off[0]
                                     ] = self.slot_label_dict[batch[i]["slot"][num]]
                        num += 1
                slot = slot_mask.clone()
                attentin_id = 0 if self.tokenizer.padding_side == "right" else 1
                for i, slot_batch in enumerate(slot):
                    for j, x in enumerate(slot_batch):
                        if x == ignore_index and text.attention_mask[i][j] == attentin_id and (text.input_ids[i][
                                j] not in self.tokenizer.all_special_ids or text.input_ids[i][j] == self.tokenizer.unk_token_id):
                            slot[i][j] = slot[i][j - 1]
                slot = slot.to(device)
                if not self.use_multi:
                    intent = torch.tensor(
                        [self.intent_label_dict[x["intent"]] for x in batch]).to(device)
                else:
                    one_hot = torch.zeros(
                        (len(batch), len(self.intent_label_list)), dtype=torch.float)
                    for index, b in enumerate(batch):
                        for x in b["intent"].split("#"):
                            one_hot[index][self.intent_label_dict[x]] = 1.
                    intent = one_hot.to(device)
            else:
                slot_mask = None
                slot = [['#' for _ in range(text.input_ids.shape[1])]
                        for _ in range(text.input_ids.shape[0])]
                for i, offsets in enumerate(DataFactory.fast_align_data(text)):
                    num = 0
                    for off in offsets:
                        slot[i][off[0]] = batch[i]["slot"][num]
                        num += 1
                if not self.use_multi:
                    intent = [x["intent"] for x in batch]
                else:
                    intent = [
                        [x for x in b["intent"].split("#")] for b in batch]
            return InputData((text, slot, intent))
        else:
            return InputData((text, None, None))

    def general_align_data(self, split_text_list, raw_text_list, encoded_text):
        for i in range(len(split_text_list)):
            desired_output = []
            jdx = 0
            offset = encoded_text.offset_mapping[i].tolist()
            split_texts = split_text_list[i]
            raw_text = raw_text_list[i]
            last = 0
            temp_offset = []
            for off in offset:
                s, e = off
                if len(temp_offset) > 0 and (e != 0 and last == s):
                    len_1 = off[1] - off[0]
                    len_2 = temp_offset[-1][1] - temp_offset[-1][0]
                    if len_1 > len_2:
                        temp_offset.pop(-1)
                        temp_offset.append([0, 0])
                        temp_offset.append(off)
                    continue
                temp_offset.append(off)
                last = s
            offset = temp_offset
            for split_text in split_texts:
                while jdx < len(offset) and offset[jdx][0] == 0 and offset[jdx][1] == 0:
                    jdx += 1
                if jdx == len(offset):
                    continue
                start_, end_ = offset[jdx]
                tokens = None
                if split_text == raw_text[start_:end_].strip():
                    tokens = [jdx]
                else:
                    # Compute "xxx" -> "xx" "#x"
                    temp_jdx = jdx
                    last_str = raw_text[start_:end_].strip()
                    while last_str != split_text and temp_jdx < len(offset) - 1:
                        temp_jdx += 1
                        last_str += raw_text[offset[temp_jdx]
                                             [0]:offset[temp_jdx][1]].strip()

                    if temp_jdx == jdx:
                        raise ValueError("Illegal Input data")
                    elif last_str == split_text:
                        tokens = [jdx, temp_jdx]
                        jdx = temp_jdx
                    else:
                        jdx -= 1
                jdx += 1
                if tokens is not None:
                    desired_output.append(tokens)
            yield desired_output

    def general_align(self,
                      batch,
                      ignore_index=-100,
                      device="cuda",
                      config=None,
                      enable_label=True,
                      label2tensor=True,
                      locale="en-US"):
        if self.to_lower_case:
            raw_data = [" ".join(x["text"]).lower() if locale not in ['ja-JP', 'zh-CN', 'zh-TW'] else "".join(x["text"]) for x in
                    batch]
            input_list = [[t.lower() for t in x["text"]] for x in batch]
        else:
            input_list = [x["text"] for x in batch]
            raw_data = [" ".join(x["text"]) if locale not in ['ja-JP', 'zh-CN', 'zh-TW'] else "".join(x["text"]) for x in
                        batch]
        text = self.tokenizer(raw_data,
                              return_tensors="pt",
                              padding=True,
                              truncation=True,
                              return_offsets_mapping=True,
                              **config).to(device)
        if enable_label:
            if label2tensor:
                slot_mask = torch.ones_like(text.input_ids) * ignore_index
                for i, offsets in enumerate(
                        self.general_align_data(input_list, raw_data, encoded_text=text)):
                    num = 0
                    # if len(offsets) != len(batch[i]["text"]) or len(offsets) != len(batch[i]["slot"]):
                    #     if
                    for off in offsets:
                        slot_mask[i][off[0]
                                     ] = self.slot_label_dict[batch[i]["slot"][num]]
                        num += 1
                # slot = slot_mask.clone()
                # attentin_id = 0 if self.tokenizer.padding_side == "right" else 1
                # for i, slot_batch in enumerate(slot):
                #     for j, x in enumerate(slot_batch):
                #         if x == ignore_index and text.attention_mask[i][j] == attentin_id and text.input_ids[i][
                #             j] not in self.tokenizer.all_special_ids:
                #             slot[i][j] = slot[i][j - 1]
                slot = slot_mask.to(device)
                if not self.use_multi:
                    intent = torch.tensor(
                        [self.intent_label_dict[x["intent"]] for x in batch]).to(device)
                else:
                    one_hot = torch.zeros(
                        (len(batch), len(self.intent_label_list)), dtype=torch.float)
                    for index, b in enumerate(batch):
                        for x in b["intent"].split("#"):
                            one_hot[index][self.intent_label_dict[x]] = 1.
                    intent = one_hot.to(device)
            else:
                slot_mask = None
                slot = [['#' for _ in range(text.input_ids.shape[1])]
                        for _ in range(text.input_ids.shape[0])]
                for i, offsets in enumerate(self.general_align_data(input_list, raw_data, encoded_text=text)):
                    num = 0
                    for off in offsets:
                        slot[i][off[0]] = batch[i]["slot"][num]
                        num += 1
                if not self.use_multi:
                    intent = [x["intent"] for x in batch]
                else:
                    intent = [
                        [x for x in b["intent"].split("#")] for b in batch]
            return InputData((text, slot, intent))
        else:
            return InputData((text, None, None))

    def batch_fn(self,
                 batch,
                 ignore_index=-100,
                 device="cuda",
                 config=None,
                 align_mode="fast",
                 enable_label=True,
                 label2tensor=True):
        if align_mode == "fast":
            # try:
            return self.fast_align(batch,
                                   ignore_index=ignore_index,
                                   device=device,
                                   config=config,
                                   enable_label=enable_label,
                                   label2tensor=label2tensor)
            # except:
            #     return self.general_align(batch,
            #                               ignore_index=ignore_index,
            #                               device=device,
            #                               config=config,
            #                               enable_label=enable_label,
            #                               label2tensor=label2tensor)
        else:
            return self.general_align(batch,
                                      ignore_index=ignore_index,
                                      device=device,
                                      config=config,
                                      enable_label=enable_label,
                                      label2tensor=label2tensor)

    def get_data_loader(self,
                        dataset,
                        batch_size,
                        shuffle=False,
                        device="cuda",
                        enable_label=True,
                        align_mode="fast",
                        label2tensor=True, **config):
        data_loader = DataLoader(dataset,
                                 shuffle=shuffle,
                                 batch_size=batch_size,
                                 collate_fn=lambda x: self.batch_fn(x,
                                                                    device=device,
                                                                    config=config,
                                                                    enable_label=enable_label,
                                                                    align_mode=align_mode,
                                                                    label2tensor=label2tensor))
        return data_loader