File size: 13,920 Bytes
37b9e99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
'''
Author: Qiguang Chen
Date: 2023-01-11 10:39:26
LastEditors: Qiguang Chen
LastEditTime: 2023-01-31 20:07:00
Description: 

'''
import random

import torch
import torch.nn.functional as F
from torch import nn
from torch.nn import CrossEntropyLoss

from model.decoder import decoder_utils

from torchcrf import CRF

from common.utils import HiddenData, OutputData, InputData, ClassifierOutputData, unpack_sequence, pack_sequence, \
    instantiate


class BaseClassifier(nn.Module):
    """Base class for all classifier module
    """
    def __init__(self, **config):
        super().__init__()
        self.config = config
        if config.get("loss_fn"):
            self.loss_fn = instantiate(config.get("loss_fn"))
        else:
            self.loss_fn = CrossEntropyLoss(ignore_index=self.config.get("ignore_index"))

    def forward(self, *args, **kwargs):
        raise NotImplementedError("No implemented classifier.")

    def decode(self, output: OutputData,
               target: InputData = None,
               return_list=True,
               return_sentence_level=None):
        """decode output logits

        Args:
            output (OutputData): output logits data
            target (InputData, optional): input data with attention mask. Defaults to None.
            return_list (bool, optional):  if True return list else return torch Tensor.. Defaults to True.
            return_sentence_level (_type_, optional): if True decode sentence level intent else decode token level intent. Defaults to None.

        Returns:
            List or Tensor: decoded sequence ids
        """
        if self.config.get("return_sentence_level") is not None and return_sentence_level is None:
            return_sentence_level = self.config.get("return_sentence_level")
        elif self.config.get("return_sentence_level") is None and return_sentence_level is None:
            return_sentence_level = False
        return decoder_utils.decode(output, target,
                                    return_list=return_list,
                                    return_sentence_level=return_sentence_level,
                                    pred_type=self.config.get("mode"),
                                    use_multi=self.config.get("use_multi"),
                                    multi_threshold=self.config.get("multi_threshold"))

    def compute_loss(self, pred: OutputData, target: InputData):
        """compute loss

        Args:
            pred (OutputData): output logits data
            target (InputData): input golden data

        Returns:
            Tensor: loss result
        """
        _CRF = None
        if self.config.get("use_crf"):
            _CRF = self.CRF
        return decoder_utils.compute_loss(pred, target, criterion_type=self.config["mode"],
                                          use_crf=_CRF is not None,
                                          ignore_index=self.config["ignore_index"],
                                          use_multi=self.config.get("use_multi"),
                                          loss_fn=self.loss_fn,
                                          CRF=_CRF)


class LinearClassifier(BaseClassifier):
    """
    Decoder structure based on Linear.
    """
    def __init__(self, **config):
        """Construction function for LinearClassifier
        
        Args:
            config (dict):
                input_dim (int): hidden state dim.
                use_slot (bool): whether to classify slot label.
                slot_label_num (int, optional): the number of slot label. Enabled if use_slot is True.
                use_intent (bool): whether to classify intent label.
                intent_label_num (int, optional): the number of intent label. Enabled if use_intent is True.
                use_crf (bool): whether to use crf for slot.
        """
        super().__init__(**config)
        self.config = config
        if config.get("use_slot"):
            self.slot_classifier = nn.Linear(config["input_dim"], config["slot_label_num"])
            if self.config.get("use_crf"):
                self.CRF = CRF(num_tags=config["slot_label_num"], batch_first=True)
        if config.get("use_intent"):
            self.intent_classifier = nn.Linear(config["input_dim"], config["intent_label_num"])

    def forward(self, hidden: HiddenData):
        if self.config.get("use_intent"):
            return ClassifierOutputData(self.intent_classifier(hidden.get_intent_hidden_state()))
        if self.config.get("use_slot"):
            return ClassifierOutputData(self.slot_classifier(hidden.get_slot_hidden_state()))



class AutoregressiveLSTMClassifier(BaseClassifier):
    """
    Decoder structure based on unidirectional LSTM.
    """

    def __init__(self, **config):
        """ Construction function for Decoder.

        Args:
            config (dict):
                input_dim (int): input dimension of Decoder. In fact, it's encoder hidden size.
                use_slot (bool): whether to classify slot label.
                slot_label_num (int, optional): the number of slot label. Enabled if use_slot is True.
                use_intent (bool): whether to classify intent label.
                intent_label_num (int, optional): the number of intent label. Enabled if use_intent is True.
                use_crf (bool): whether to use crf for slot.
                hidden_dim (int): hidden dimension of iterative LSTM.
                embedding_dim (int): if it's not None, the input and output are relevant.
                dropout_rate (float): dropout rate of network which is only useful for embedding.
        """

        super(AutoregressiveLSTMClassifier, self).__init__(**config)
        if config.get("use_slot") and config.get("use_crf"):
            self.CRF = CRF(num_tags=config["slot_label_num"], batch_first=True)
        self.input_dim = config["input_dim"]
        self.hidden_dim = config["hidden_dim"]
        if config.get("use_intent"):
            self.output_dim = config["intent_label_num"]
        if config.get("use_slot"):
            self.output_dim = config["slot_label_num"]
        self.dropout_rate = config["dropout_rate"]
        self.embedding_dim = config.get("embedding_dim")
        self.force_ratio = config.get("force_ratio")
        self.config = config
        self.ignore_index = config.get("ignore_index") if config.get("ignore_index") is not None else -100
        # If embedding_dim is not None, the output and input
        # of this structure is relevant.
        if self.embedding_dim is not None:
            self.embedding_layer = nn.Embedding(self.output_dim, self.embedding_dim)
            self.init_tensor = nn.Parameter(
                torch.randn(1, self.embedding_dim),
                requires_grad=True
            )

        # Make sure the input dimension of iterative LSTM.
        if self.embedding_dim is not None:
            lstm_input_dim = self.input_dim + self.embedding_dim
        else:
            lstm_input_dim = self.input_dim

        # Network parameter definition.
        self.dropout_layer = nn.Dropout(self.dropout_rate)
        self.lstm_layer = nn.LSTM(
            input_size=lstm_input_dim,
            hidden_size=self.hidden_dim,
            batch_first=True,
            bidirectional=self.config["bidirectional"],
            dropout=self.dropout_rate,
            num_layers=self.config["layer_num"]
        )
        self.linear_layer = nn.Linear(
            self.hidden_dim,
            self.output_dim
        )
        # self.loss_fn = CrossEntropyLoss(ignore_index=self.ignore_index)

    def forward(self, hidden: HiddenData, internal_interaction=None, **interaction_args):
        """ Forward process for decoder.

        :param internal_interaction:
        :param hidden:
        :return: is distribution of prediction labels.
        """
        input_tensor = hidden.slot_hidden
        seq_lens = hidden.inputs.attention_mask.sum(-1).detach().cpu().tolist()
        output_tensor_list, sent_start_pos = [], 0
        input_tensor = pack_sequence(input_tensor, seq_lens)
        forced_input = None
        if self.training:
            if random.random() < self.force_ratio:
                if self.config["mode"]=="slot":

                    forced_slot = pack_sequence(hidden.inputs.slot, seq_lens)
                    temp_slot = []
                    for index, x in enumerate(forced_slot):
                        if index == 0:
                            temp_slot.append(x.reshape(1))
                        elif x == self.ignore_index:
                            temp_slot.append(temp_slot[-1])
                        else:
                            temp_slot.append(x.reshape(1))
                    forced_input = torch.cat(temp_slot, 0)
                if self.config["mode"]=="token-level-intent":
                    forced_intent = hidden.inputs.intent.unsqueeze(1).repeat(1, hidden.inputs.slot.shape[1])
                    forced_input = pack_sequence(forced_intent, seq_lens)
        if self.embedding_dim is None or forced_input is not None:

            for sent_i in range(0, len(seq_lens)):
                sent_end_pos = sent_start_pos + seq_lens[sent_i]

                # Segment input hidden tensors.
                seg_hiddens = input_tensor[sent_start_pos: sent_end_pos, :]

                if self.embedding_dim is not None and forced_input is not None:
                    if seq_lens[sent_i] > 1:
                        seg_forced_input = forced_input[sent_start_pos: sent_end_pos]

                        seg_forced_tensor = self.embedding_layer(seg_forced_input)[:-1]
                        seg_prev_tensor = torch.cat([self.init_tensor, seg_forced_tensor], dim=0)
                    else:
                        seg_prev_tensor = self.init_tensor

                    # Concatenate forced target tensor.
                    combined_input = torch.cat([seg_hiddens, seg_prev_tensor], dim=1)
                else:
                    combined_input = seg_hiddens
                dropout_input = self.dropout_layer(combined_input)
                lstm_out, _ = self.lstm_layer(dropout_input.view(1, seq_lens[sent_i], -1))
                if internal_interaction is not None:
                    interaction_args["sent_id"] = sent_i
                    lstm_out = internal_interaction(torch.transpose(lstm_out, 0, 1), **interaction_args)[:, 0]
                linear_out = self.linear_layer(lstm_out.view(seq_lens[sent_i], -1))

                output_tensor_list.append(linear_out)
                sent_start_pos = sent_end_pos
        else:
            for sent_i in range(0, len(seq_lens)):
                prev_tensor = self.init_tensor

                # It's necessary to remember h and c state
                # when output prediction every single step.
                last_h, last_c = None, None

                sent_end_pos = sent_start_pos + seq_lens[sent_i]
                for word_i in range(sent_start_pos, sent_end_pos):
                    seg_input = input_tensor[[word_i], :]
                    combined_input = torch.cat([seg_input, prev_tensor], dim=1)
                    dropout_input = self.dropout_layer(combined_input).view(1, 1, -1)
                    if last_h is None and last_c is None:
                        lstm_out, (last_h, last_c) = self.lstm_layer(dropout_input)
                    else:
                        lstm_out, (last_h, last_c) = self.lstm_layer(dropout_input, (last_h, last_c))

                    if internal_interaction is not None:
                        interaction_args["sent_id"] = sent_i
                        lstm_out = internal_interaction(lstm_out, **interaction_args)[:, 0]

                    lstm_out = self.linear_layer(lstm_out.view(1, -1))
                    output_tensor_list.append(lstm_out)

                    _, index = lstm_out.topk(1, dim=1)
                    prev_tensor = self.embedding_layer(index).view(1, -1)
                sent_start_pos = sent_end_pos
        seq_unpacked = unpack_sequence(torch.cat(output_tensor_list, dim=0), seq_lens)
        # TODO: 都支持softmax
        if self.config.get("use_multi"):
            pred_output = ClassifierOutputData(seq_unpacked)
        else:
            pred_output = ClassifierOutputData(F.log_softmax(seq_unpacked, dim=-1))
        return pred_output


class MLPClassifier(BaseClassifier):
    """
    Decoder structure based on MLP.
    """
    def __init__(self, **config):
        """ Construction function for Decoder.

        Args:
            config (dict):
                use_slot (bool): whether to classify slot label.
                use_intent (bool): whether to classify intent label.
                mlp (List):
                
                    - _model_target_: torch.nn.Linear
                    
                    in_features (int): input feature dim
                      
                    out_features (int): output feature dim
                      
                    -  _model_target_: torch.nn.LeakyReLU
                    
                    negative_slope: 0.2
                    
                    - ...
        """
        super(MLPClassifier, self).__init__(**config)
        self.config = config
        for i, x in enumerate(config["mlp"]):
            if isinstance(x.get("in_features"), str):
                config["mlp"][i]["in_features"] = self.config[x["in_features"][1:-1]]
            if isinstance(x.get("out_features"), str):
                config["mlp"][i]["out_features"] = self.config[x["out_features"][1:-1]]
        mlp = [instantiate(x) for x in config["mlp"]]
        self.seq = nn.Sequential(*mlp)


    def forward(self, hidden: HiddenData):
        if self.config.get("use_intent"):
            res = self.seq(hidden.intent_hidden)
        else:
            res = self.seq(hidden.slot_hidden)
        return ClassifierOutputData(res)