Spaces:
Runtime error
Runtime error
File size: 13,920 Bytes
37b9e99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
'''
Author: Qiguang Chen
Date: 2023-01-11 10:39:26
LastEditors: Qiguang Chen
LastEditTime: 2023-01-31 20:07:00
Description:
'''
import random
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn import CrossEntropyLoss
from model.decoder import decoder_utils
from torchcrf import CRF
from common.utils import HiddenData, OutputData, InputData, ClassifierOutputData, unpack_sequence, pack_sequence, \
instantiate
class BaseClassifier(nn.Module):
"""Base class for all classifier module
"""
def __init__(self, **config):
super().__init__()
self.config = config
if config.get("loss_fn"):
self.loss_fn = instantiate(config.get("loss_fn"))
else:
self.loss_fn = CrossEntropyLoss(ignore_index=self.config.get("ignore_index"))
def forward(self, *args, **kwargs):
raise NotImplementedError("No implemented classifier.")
def decode(self, output: OutputData,
target: InputData = None,
return_list=True,
return_sentence_level=None):
"""decode output logits
Args:
output (OutputData): output logits data
target (InputData, optional): input data with attention mask. Defaults to None.
return_list (bool, optional): if True return list else return torch Tensor.. Defaults to True.
return_sentence_level (_type_, optional): if True decode sentence level intent else decode token level intent. Defaults to None.
Returns:
List or Tensor: decoded sequence ids
"""
if self.config.get("return_sentence_level") is not None and return_sentence_level is None:
return_sentence_level = self.config.get("return_sentence_level")
elif self.config.get("return_sentence_level") is None and return_sentence_level is None:
return_sentence_level = False
return decoder_utils.decode(output, target,
return_list=return_list,
return_sentence_level=return_sentence_level,
pred_type=self.config.get("mode"),
use_multi=self.config.get("use_multi"),
multi_threshold=self.config.get("multi_threshold"))
def compute_loss(self, pred: OutputData, target: InputData):
"""compute loss
Args:
pred (OutputData): output logits data
target (InputData): input golden data
Returns:
Tensor: loss result
"""
_CRF = None
if self.config.get("use_crf"):
_CRF = self.CRF
return decoder_utils.compute_loss(pred, target, criterion_type=self.config["mode"],
use_crf=_CRF is not None,
ignore_index=self.config["ignore_index"],
use_multi=self.config.get("use_multi"),
loss_fn=self.loss_fn,
CRF=_CRF)
class LinearClassifier(BaseClassifier):
"""
Decoder structure based on Linear.
"""
def __init__(self, **config):
"""Construction function for LinearClassifier
Args:
config (dict):
input_dim (int): hidden state dim.
use_slot (bool): whether to classify slot label.
slot_label_num (int, optional): the number of slot label. Enabled if use_slot is True.
use_intent (bool): whether to classify intent label.
intent_label_num (int, optional): the number of intent label. Enabled if use_intent is True.
use_crf (bool): whether to use crf for slot.
"""
super().__init__(**config)
self.config = config
if config.get("use_slot"):
self.slot_classifier = nn.Linear(config["input_dim"], config["slot_label_num"])
if self.config.get("use_crf"):
self.CRF = CRF(num_tags=config["slot_label_num"], batch_first=True)
if config.get("use_intent"):
self.intent_classifier = nn.Linear(config["input_dim"], config["intent_label_num"])
def forward(self, hidden: HiddenData):
if self.config.get("use_intent"):
return ClassifierOutputData(self.intent_classifier(hidden.get_intent_hidden_state()))
if self.config.get("use_slot"):
return ClassifierOutputData(self.slot_classifier(hidden.get_slot_hidden_state()))
class AutoregressiveLSTMClassifier(BaseClassifier):
"""
Decoder structure based on unidirectional LSTM.
"""
def __init__(self, **config):
""" Construction function for Decoder.
Args:
config (dict):
input_dim (int): input dimension of Decoder. In fact, it's encoder hidden size.
use_slot (bool): whether to classify slot label.
slot_label_num (int, optional): the number of slot label. Enabled if use_slot is True.
use_intent (bool): whether to classify intent label.
intent_label_num (int, optional): the number of intent label. Enabled if use_intent is True.
use_crf (bool): whether to use crf for slot.
hidden_dim (int): hidden dimension of iterative LSTM.
embedding_dim (int): if it's not None, the input and output are relevant.
dropout_rate (float): dropout rate of network which is only useful for embedding.
"""
super(AutoregressiveLSTMClassifier, self).__init__(**config)
if config.get("use_slot") and config.get("use_crf"):
self.CRF = CRF(num_tags=config["slot_label_num"], batch_first=True)
self.input_dim = config["input_dim"]
self.hidden_dim = config["hidden_dim"]
if config.get("use_intent"):
self.output_dim = config["intent_label_num"]
if config.get("use_slot"):
self.output_dim = config["slot_label_num"]
self.dropout_rate = config["dropout_rate"]
self.embedding_dim = config.get("embedding_dim")
self.force_ratio = config.get("force_ratio")
self.config = config
self.ignore_index = config.get("ignore_index") if config.get("ignore_index") is not None else -100
# If embedding_dim is not None, the output and input
# of this structure is relevant.
if self.embedding_dim is not None:
self.embedding_layer = nn.Embedding(self.output_dim, self.embedding_dim)
self.init_tensor = nn.Parameter(
torch.randn(1, self.embedding_dim),
requires_grad=True
)
# Make sure the input dimension of iterative LSTM.
if self.embedding_dim is not None:
lstm_input_dim = self.input_dim + self.embedding_dim
else:
lstm_input_dim = self.input_dim
# Network parameter definition.
self.dropout_layer = nn.Dropout(self.dropout_rate)
self.lstm_layer = nn.LSTM(
input_size=lstm_input_dim,
hidden_size=self.hidden_dim,
batch_first=True,
bidirectional=self.config["bidirectional"],
dropout=self.dropout_rate,
num_layers=self.config["layer_num"]
)
self.linear_layer = nn.Linear(
self.hidden_dim,
self.output_dim
)
# self.loss_fn = CrossEntropyLoss(ignore_index=self.ignore_index)
def forward(self, hidden: HiddenData, internal_interaction=None, **interaction_args):
""" Forward process for decoder.
:param internal_interaction:
:param hidden:
:return: is distribution of prediction labels.
"""
input_tensor = hidden.slot_hidden
seq_lens = hidden.inputs.attention_mask.sum(-1).detach().cpu().tolist()
output_tensor_list, sent_start_pos = [], 0
input_tensor = pack_sequence(input_tensor, seq_lens)
forced_input = None
if self.training:
if random.random() < self.force_ratio:
if self.config["mode"]=="slot":
forced_slot = pack_sequence(hidden.inputs.slot, seq_lens)
temp_slot = []
for index, x in enumerate(forced_slot):
if index == 0:
temp_slot.append(x.reshape(1))
elif x == self.ignore_index:
temp_slot.append(temp_slot[-1])
else:
temp_slot.append(x.reshape(1))
forced_input = torch.cat(temp_slot, 0)
if self.config["mode"]=="token-level-intent":
forced_intent = hidden.inputs.intent.unsqueeze(1).repeat(1, hidden.inputs.slot.shape[1])
forced_input = pack_sequence(forced_intent, seq_lens)
if self.embedding_dim is None or forced_input is not None:
for sent_i in range(0, len(seq_lens)):
sent_end_pos = sent_start_pos + seq_lens[sent_i]
# Segment input hidden tensors.
seg_hiddens = input_tensor[sent_start_pos: sent_end_pos, :]
if self.embedding_dim is not None and forced_input is not None:
if seq_lens[sent_i] > 1:
seg_forced_input = forced_input[sent_start_pos: sent_end_pos]
seg_forced_tensor = self.embedding_layer(seg_forced_input)[:-1]
seg_prev_tensor = torch.cat([self.init_tensor, seg_forced_tensor], dim=0)
else:
seg_prev_tensor = self.init_tensor
# Concatenate forced target tensor.
combined_input = torch.cat([seg_hiddens, seg_prev_tensor], dim=1)
else:
combined_input = seg_hiddens
dropout_input = self.dropout_layer(combined_input)
lstm_out, _ = self.lstm_layer(dropout_input.view(1, seq_lens[sent_i], -1))
if internal_interaction is not None:
interaction_args["sent_id"] = sent_i
lstm_out = internal_interaction(torch.transpose(lstm_out, 0, 1), **interaction_args)[:, 0]
linear_out = self.linear_layer(lstm_out.view(seq_lens[sent_i], -1))
output_tensor_list.append(linear_out)
sent_start_pos = sent_end_pos
else:
for sent_i in range(0, len(seq_lens)):
prev_tensor = self.init_tensor
# It's necessary to remember h and c state
# when output prediction every single step.
last_h, last_c = None, None
sent_end_pos = sent_start_pos + seq_lens[sent_i]
for word_i in range(sent_start_pos, sent_end_pos):
seg_input = input_tensor[[word_i], :]
combined_input = torch.cat([seg_input, prev_tensor], dim=1)
dropout_input = self.dropout_layer(combined_input).view(1, 1, -1)
if last_h is None and last_c is None:
lstm_out, (last_h, last_c) = self.lstm_layer(dropout_input)
else:
lstm_out, (last_h, last_c) = self.lstm_layer(dropout_input, (last_h, last_c))
if internal_interaction is not None:
interaction_args["sent_id"] = sent_i
lstm_out = internal_interaction(lstm_out, **interaction_args)[:, 0]
lstm_out = self.linear_layer(lstm_out.view(1, -1))
output_tensor_list.append(lstm_out)
_, index = lstm_out.topk(1, dim=1)
prev_tensor = self.embedding_layer(index).view(1, -1)
sent_start_pos = sent_end_pos
seq_unpacked = unpack_sequence(torch.cat(output_tensor_list, dim=0), seq_lens)
# TODO: 都支持softmax
if self.config.get("use_multi"):
pred_output = ClassifierOutputData(seq_unpacked)
else:
pred_output = ClassifierOutputData(F.log_softmax(seq_unpacked, dim=-1))
return pred_output
class MLPClassifier(BaseClassifier):
"""
Decoder structure based on MLP.
"""
def __init__(self, **config):
""" Construction function for Decoder.
Args:
config (dict):
use_slot (bool): whether to classify slot label.
use_intent (bool): whether to classify intent label.
mlp (List):
- _model_target_: torch.nn.Linear
in_features (int): input feature dim
out_features (int): output feature dim
- _model_target_: torch.nn.LeakyReLU
negative_slope: 0.2
- ...
"""
super(MLPClassifier, self).__init__(**config)
self.config = config
for i, x in enumerate(config["mlp"]):
if isinstance(x.get("in_features"), str):
config["mlp"][i]["in_features"] = self.config[x["in_features"][1:-1]]
if isinstance(x.get("out_features"), str):
config["mlp"][i]["out_features"] = self.config[x["out_features"][1:-1]]
mlp = [instantiate(x) for x in config["mlp"]]
self.seq = nn.Sequential(*mlp)
def forward(self, hidden: HiddenData):
if self.config.get("use_intent"):
res = self.seq(hidden.intent_hidden)
else:
res = self.seq(hidden.slot_hidden)
return ClassifierOutputData(res)
|