File size: 9,255 Bytes
37b9e99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence

from common.utils import HiddenData, ClassifierOutputData
from model.decoder.interaction import BaseInteraction


class LSTMEncoder(nn.Module):
    """
    Encoder structure based on bidirectional LSTM.
    """

    def __init__(self, embedding_dim, hidden_dim, dropout_rate):
        super(LSTMEncoder, self).__init__()

        # Parameter recording.
        self.__embedding_dim = embedding_dim
        self.__hidden_dim = hidden_dim // 2
        self.__dropout_rate = dropout_rate

        # Network attributes.
        self.__dropout_layer = nn.Dropout(self.__dropout_rate)
        self.__lstm_layer = nn.LSTM(
            input_size=self.__embedding_dim,
            hidden_size=self.__hidden_dim,
            batch_first=True,
            bidirectional=True,
            dropout=self.__dropout_rate,
            num_layers=1
        )

    def forward(self, embedded_text, seq_lens):
        """ Forward process for LSTM Encoder.

        (batch_size, max_sent_len)
        -> (batch_size, max_sent_len, word_dim)
        -> (batch_size, max_sent_len, hidden_dim)

        :param embedded_text: padded and embedded input text.
        :param seq_lens: is the length of original input text.
        :return: is encoded word hidden vectors.
        """

        # Padded_text should be instance of LongTensor.
        dropout_text = self.__dropout_layer(embedded_text)

        # Pack and Pad process for input of variable length.
        packed_text = pack_padded_sequence(dropout_text, seq_lens.cpu(), batch_first=True, enforce_sorted=False)
        lstm_hiddens, (h_last, c_last) = self.__lstm_layer(packed_text)
        padded_hiddens, _ = pad_packed_sequence(lstm_hiddens, batch_first=True)

        return padded_hiddens


class GraphAttentionLayer(nn.Module):
    """
    Simple GAT layer, similar to https://arxiv.org/abs/1710.10903
    """

    def __init__(self, in_features, out_features, dropout, alpha, concat=True):
        super(GraphAttentionLayer, self).__init__()
        self.dropout = dropout
        self.in_features = in_features
        self.out_features = out_features
        self.alpha = alpha
        self.concat = concat

        self.W = nn.Parameter(torch.zeros(size=(in_features, out_features)))
        nn.init.xavier_uniform_(self.W.data, gain=1.414)
        self.a = nn.Parameter(torch.zeros(size=(2 * out_features, 1)))
        nn.init.xavier_uniform_(self.a.data, gain=1.414)

        self.leakyrelu = nn.LeakyReLU(self.alpha)

    def forward(self, input, adj):
        h = torch.matmul(input, self.W)
        B, N = h.size()[0], h.size()[1]

        a_input = torch.cat([h.repeat(1, 1, N).view(B, N * N, -1), h.repeat(1, N, 1)], dim=2).view(B, N, -1,
                                                                                                   2 * self.out_features)
        e = self.leakyrelu(torch.matmul(a_input, self.a).squeeze(3))

        zero_vec = -9e15 * torch.ones_like(e)
        attention = torch.where(adj > 0, e, zero_vec)
        attention = F.softmax(attention, dim=2)
        attention = F.dropout(attention, self.dropout, training=self.training)
        h_prime = torch.matmul(attention, h)

        if self.concat:
            return F.elu(h_prime)
        else:
            return h_prime


class GAT(nn.Module):
    def __init__(self, nfeat, nhid, nclass, dropout, alpha, nheads, nlayers=2):
        """Dense version of GAT."""
        super(GAT, self).__init__()
        self.dropout = dropout
        self.nlayers = nlayers
        self.nheads = nheads
        self.attentions = [GraphAttentionLayer(nfeat, nhid, dropout=dropout, alpha=alpha, concat=True) for _ in
                           range(nheads)]
        for i, attention in enumerate(self.attentions):
            self.add_module('attention_{}'.format(i), attention)
        if self.nlayers > 2:
            for i in range(self.nlayers - 2):
                for j in range(self.nheads):
                    self.add_module('attention_{}_{}'.format(i + 1, j),
                                    GraphAttentionLayer(nhid * nheads, nhid, dropout=dropout, alpha=alpha, concat=True))

        self.out_att = GraphAttentionLayer(nhid * nheads, nclass, dropout=dropout, alpha=alpha, concat=False)

    def forward(self, x, adj):
        x = F.dropout(x, self.dropout, training=self.training)
        input = x
        x = torch.cat([att(x, adj) for att in self.attentions], dim=2)
        if self.nlayers > 2:
            for i in range(self.nlayers - 2):
                temp = []
                x = F.dropout(x, self.dropout, training=self.training)
                cur_input = x
                for j in range(self.nheads):
                    temp.append(self.__getattr__('attention_{}_{}'.format(i + 1, j))(x, adj))
                x = torch.cat(temp, dim=2) + cur_input
        x = F.dropout(x, self.dropout, training=self.training)
        x = F.elu(self.out_att(x, adj))
        return x + input


def normalize_adj(mx):
    """
    Row-normalize matrix  D^{-1}A
    torch.diag_embed: https://github.com/pytorch/pytorch/pull/12447
    """
    mx = mx.float()
    rowsum = mx.sum(2)
    r_inv = torch.pow(rowsum, -1)
    r_inv[torch.isinf(r_inv)] = 0.
    r_mat_inv = torch.diag_embed(r_inv, 0)
    mx = r_mat_inv.matmul(mx)
    return mx


class GLGINInteraction(BaseInteraction):
    def __init__(self, **config):
        super().__init__(**config)
        self.intent_embedding = nn.Parameter(
            torch.FloatTensor(self.config["intent_label_num"], self.config["intent_embedding_dim"]))  # 191, 32
        nn.init.normal_(self.intent_embedding.data)
        self.adj = None
        self.__slot_lstm = LSTMEncoder(
            self.config["input_dim"] + self.config["intent_label_num"],
            config["output_dim"],
            config["dropout_rate"]
        )
        self.__slot_graph = GAT(
            config["output_dim"],
            config["hidden_dim"],
            config["output_dim"],
            config["dropout_rate"],
            config["alpha"],
            config["num_heads"],
            config["num_layers"])

        self.__global_graph = GAT(
            config["output_dim"],
            config["hidden_dim"],
            config["output_dim"],
            config["dropout_rate"],
            config["alpha"],
            config["num_heads"],
            config["num_layers"])

    def generate_global_adj_gat(self, seq_len, index, batch, window):
        global_intent_idx = [[] for i in range(batch)]
        global_slot_idx = [[] for i in range(batch)]
        for item in index:
            global_intent_idx[item[0]].append(item[1])

        for i, len in enumerate(seq_len):
            global_slot_idx[i].extend(
                list(range(self.config["intent_label_num"], self.config["intent_label_num"] + len)))

        adj = torch.cat([torch.eye(self.config["intent_label_num"] + max(seq_len)).unsqueeze(0) for i in range(batch)])
        for i in range(batch):
            for j in global_intent_idx[i]:
                adj[i, j, global_slot_idx[i]] = 1.
                adj[i, j, global_intent_idx[i]] = 1.
            for j in global_slot_idx[i]:
                adj[i, j, global_intent_idx[i]] = 1.

        for i in range(batch):
            for j in range(self.config["intent_label_num"], self.config["intent_label_num"] + seq_len[i]):
                adj[i, j, max(self.config["intent_label_num"], j - window):min(seq_len[i] + self.config["intent_label_num"], j + window + 1)] = 1.

        if self.config["row_normalized"]:
            adj = normalize_adj(adj)
        adj = adj.to(self.intent_embedding.device)
        return adj

    def generate_slot_adj_gat(self, seq_len, batch, window):
        slot_idx_ = [[] for i in range(batch)]
        adj = torch.cat([torch.eye(max(seq_len)).unsqueeze(0) for i in range(batch)])
        for i in range(batch):
            for j in range(seq_len[i]):
                adj[i, j, max(0, j - window):min(seq_len[i], j + window + 1)] = 1.
        if self.config["row_normalized"]:
            adj = normalize_adj(adj)
        adj = adj.to(self.intent_embedding.device)
        return adj

    def forward(self, encode_hidden: HiddenData, pred_intent: ClassifierOutputData = None, intent_index=None):
        seq_lens = encode_hidden.inputs.attention_mask.sum(-1)
        slot_lstm_out = self.__slot_lstm(torch.cat([encode_hidden.slot_hidden, pred_intent.classifier_output], dim=-1),
                                         seq_lens)
        global_adj = self.generate_global_adj_gat(seq_lens, intent_index, len(seq_lens),
                                                  self.config["slot_graph_window"])
        slot_adj = self.generate_slot_adj_gat(seq_lens, len(seq_lens), self.config["slot_graph_window"])
        batch = len(seq_lens)
        slot_graph_out = self.__slot_graph(slot_lstm_out, slot_adj)
        intent_in = self.intent_embedding.unsqueeze(0).repeat(batch, 1, 1)
        global_graph_in = torch.cat([intent_in, slot_graph_out], dim=1)
        encode_hidden.update_slot_hidden_state(self.__global_graph(global_graph_in, global_adj))
        return encode_hidden