Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from common.utils import HiddenData | |
from model.decoder.interaction.base_interaction import BaseInteraction | |
class BiModelInteraction(BaseInteraction): | |
def __init__(self, **config): | |
super().__init__(**config) | |
self.intent_lstm = nn.LSTM(input_size=self.config["input_dim"], hidden_size=self.config["output_dim"], | |
batch_first=True, | |
num_layers=1) | |
self.slot_lstm = nn.LSTM(input_size=self.config["input_dim"] + self.config["output_dim"], | |
hidden_size=self.config["output_dim"], num_layers=1) | |
def forward(self, encode_hidden: HiddenData, **kwargs): | |
slot_hidden = encode_hidden.get_slot_hidden_state() | |
intent_hidden_detached = encode_hidden.get_intent_hidden_state().clone().detach() | |
seq_lens = encode_hidden.inputs.attention_mask.sum(-1) | |
batch = slot_hidden.size(0) | |
length = slot_hidden.size(1) | |
dec_init_out = torch.zeros(batch, 1, self.config["output_dim"]).to(slot_hidden.device) | |
hidden_state = (torch.zeros(1, 1, self.config["output_dim"]).to(slot_hidden.device), torch.zeros(1, 1, self.config["output_dim"]).to(slot_hidden.device)) | |
slot_hidden = torch.cat((slot_hidden, intent_hidden_detached), dim=-1).transpose(1, | |
0) # 50 x batch x feature_size | |
slot_drop = F.dropout(slot_hidden, self.config["dropout_rate"]) | |
all_out = [] | |
for i in range(length): | |
if i == 0: | |
out, hidden_state = self.slot_lstm(torch.cat((slot_drop[i].unsqueeze(1), dec_init_out), dim=-1), | |
hidden_state) | |
else: | |
out, hidden_state = self.slot_lstm(torch.cat((slot_drop[i].unsqueeze(1), out), dim=-1), hidden_state) | |
all_out.append(out) | |
slot_output = torch.cat(all_out, dim=1) # batch x 50 x feature_size | |
intent_hidden = torch.cat((encode_hidden.get_intent_hidden_state(), | |
encode_hidden.get_slot_hidden_state().clone().detach()), | |
dim=-1) | |
intent_drop = F.dropout(intent_hidden, self.config["dropout_rate"]) | |
intent_lstm_output, _ = self.intent_lstm(intent_drop) | |
intent_output = F.dropout(intent_lstm_output, self.config["dropout_rate"]) | |
output_list = [] | |
for index, slen in enumerate(seq_lens): | |
output_list.append(intent_output[index, slen - 1, :].unsqueeze(0)) | |
encode_hidden.update_intent_hidden_state(torch.cat(output_list, dim=0)) | |
encode_hidden.update_slot_hidden_state(slot_output) | |
return encode_hidden | |
class BiModelWithoutDecoderInteraction(BaseInteraction): | |
def forward(self, encode_hidden: HiddenData, **kwargs): | |
slot_hidden = encode_hidden.get_slot_hidden_state() | |
intent_hidden_detached = encode_hidden.get_intent_hidden_state().clone().detach() | |
seq_lens = encode_hidden.inputs.attention_mask.sum(-1) | |
slot_hidden = torch.cat((slot_hidden, intent_hidden_detached), dim=-1) # 50 x batch x feature_size | |
slot_output = F.dropout(slot_hidden, self.config["dropout_rate"]) | |
intent_hidden = torch.cat((encode_hidden.get_intent_hidden_state(), | |
encode_hidden.get_slot_hidden_state().clone().detach()), | |
dim=-1) | |
intent_output = F.dropout(intent_hidden, self.config["dropout_rate"]) | |
output_list = [] | |
for index, slen in enumerate(seq_lens): | |
output_list.append(intent_output[index, slen - 1, :].unsqueeze(0)) | |
encode_hidden.update_intent_hidden_state(torch.cat(output_list, dim=0)) | |
encode_hidden.update_slot_hidden_state(slot_output) | |
return encode_hidden | |