device: "Tesla V100-SXM2-16GB" base: name: "OpenSLUv1" train: true test: true device: cuda seed: 42 epoch_num: 300 batch_size: 16 model_manager: load_dir: null save_dir: save/stack-propagation-snips evaluator: best_key: EMA eval_by_epoch: true # eval_step: 1800 metric: - intent_acc - slot_f1 - EMA accelerator: use_accelerator: false dataset: dataset_name: snips tokenizer: _tokenizer_name_: word_tokenizer _padding_side_: right _align_mode_: fast add_special_tokens: false max_length: 512 optimizer: _model_target_: torch.optim.Adam _model_partial_: true lr: 0.001 weight_decay: 1e-6 scheduler: _model_target_: transformers.get_scheduler _model_partial_: true name : "linear" num_warmup_steps: 0 model: _model_target_: model.OpenSLUModel encoder: _model_target_: model.encoder.AutoEncoder encoder_name: self-attention-lstm embedding: embedding_dim: 256 dropout_rate: 0.4 lstm: layer_num: 1 bidirectional: true output_dim: 256 dropout_rate: 0.4 attention: hidden_dim: 1024 output_dim: 128 dropout_rate: 0.4 return_with_input: true return_sentence_level_hidden: false decoder: _model_target_: model.decoder.StackPropagationDecoder interaction: _model_target_: model.decoder.interaction.StackInteraction differentiable: false intent_classifier: _model_target_: model.decoder.classifier.AutoregressiveLSTMClassifier layer_num: 1 bidirectional: false force_ratio: 0.9 hidden_dim: 64 embedding_dim: 8 ignore_index: -100 dropout_rate: 0.4 mode: "token-level-intent" use_multi: false return_sentence_level: true slot_classifier: _model_target_: model.decoder.classifier.AutoregressiveLSTMClassifier layer_num: 1 bidirectional: false force_ratio: 0.9 hidden_dim: 64 embedding_dim: 32 ignore_index: -100 dropout_rate: 0.4 mode: "slot" use_multi: false return_sentence_level: false