import torch import torch.nn as nn import torch.nn.functional as F from model.decoder.interaction.base_interaction import BaseInteraction class GraphAttentionLayer(nn.Module): """ Simple GAT layer, similar to https://arxiv.org/abs/1710.10903 """ def __init__(self, in_features, out_features, dropout, alpha, concat=True): super(GraphAttentionLayer, self).__init__() self.dropout = dropout self.in_features = in_features self.out_features = out_features self.alpha = alpha self.concat = concat self.W = nn.Parameter(torch.zeros(size=(in_features, out_features))) nn.init.xavier_uniform_(self.W.data, gain=1.414) self.a = nn.Parameter(torch.zeros(size=(2 * out_features, 1))) nn.init.xavier_uniform_(self.a.data, gain=1.414) self.leakyrelu = nn.LeakyReLU(self.alpha) def forward(self, input, adj): h = torch.matmul(input, self.W) B, N = h.size()[0], h.size()[1] a_input = torch.cat([h.repeat(1, 1, N).view(B, N * N, -1), h.repeat(1, N, 1)], dim=2).view(B, N, -1, 2 * self.out_features) e = self.leakyrelu(torch.matmul(a_input, self.a).squeeze(3)) zero_vec = -9e15 * torch.ones_like(e) attention = torch.where(adj > 0, e, zero_vec) attention = F.softmax(attention, dim=2) attention = F.dropout(attention, self.dropout, training=self.training) h_prime = torch.matmul(attention, h) if self.concat: return F.elu(h_prime) else: return h_prime class GAT(nn.Module): def __init__(self, nfeat, nhid, nclass, dropout, alpha, nheads, nlayers=2): """Dense version of GAT.""" super(GAT, self).__init__() self.dropout = dropout self.nlayers = nlayers self.nheads = nheads self.attentions = [GraphAttentionLayer(nfeat, nhid, dropout=dropout, alpha=alpha, concat=True) for _ in range(nheads)] for i, attention in enumerate(self.attentions): self.add_module('attention_{}'.format(i), attention) if self.nlayers > 2: for i in range(self.nlayers - 2): for j in range(self.nheads): self.add_module('attention_{}_{}'.format(i + 1, j), GraphAttentionLayer(nhid * nheads, nhid, dropout=dropout, alpha=alpha, concat=True)) self.out_att = GraphAttentionLayer(nhid * nheads, nclass, dropout=dropout, alpha=alpha, concat=False) def forward(self, x, adj): x = F.dropout(x, self.dropout, training=self.training) input = x x = torch.cat([att(x, adj) for att in self.attentions], dim=2) if self.nlayers > 2: for i in range(self.nlayers - 2): temp = [] x = F.dropout(x, self.dropout, training=self.training) cur_input = x for j in range(self.nheads): temp.append(self.__getattr__('attention_{}_{}'.format(i + 1, j))(x, adj)) x = torch.cat(temp, dim=2) + cur_input x = F.dropout(x, self.dropout, training=self.training) x = F.elu(self.out_att(x, adj)) return x + input def normalize_adj(mx): """ Row-normalize matrix D^{-1}A torch.diag_embed: https://github.com/pytorch/pytorch/pull/12447 """ mx = mx.float() rowsum = mx.sum(2) r_inv = torch.pow(rowsum, -1) r_inv[torch.isinf(r_inv)] = 0. r_mat_inv = torch.diag_embed(r_inv, 0) mx = r_mat_inv.matmul(mx) return mx class AGIFInteraction(BaseInteraction): def __init__(self, **config): super().__init__(**config) self.intent_embedding = nn.Parameter( torch.FloatTensor(self.config["intent_label_num"], self.config["intent_embedding_dim"])) # 191, 32 nn.init.normal_(self.intent_embedding.data) self.adj = None self.graph = GAT( config["output_dim"], config["hidden_dim"], config["output_dim"], config["dropout_rate"], config["alpha"], config["num_heads"], config["num_layers"]) def generate_adj_gat(self, index, batch, intent_label_num): intent_idx_ = [[torch.tensor(0)] for i in range(batch)] for item in index: intent_idx_[item[0]].append(item[1] + 1) intent_idx = intent_idx_ self.adj = torch.cat([torch.eye(intent_label_num + 1).unsqueeze(0) for i in range(batch)]) for i in range(batch): for j in intent_idx[i]: self.adj[i, j, intent_idx[i]] = 1. if self.config["row_normalized"]: self.adj = normalize_adj(self.adj) self.adj = self.adj.to(self.intent_embedding.device) def forward(self, encode_hidden, **interaction_args): if self.adj is None or interaction_args["sent_id"] == 0: self.generate_adj_gat(interaction_args["intent_index"], interaction_args["batch_size"], interaction_args["intent_label_num"]) lstm_out = torch.cat((encode_hidden, self.intent_embedding.unsqueeze(0).repeat(encode_hidden.shape[0], 1, 1)), dim=1) return self.graph(lstm_out, self.adj[interaction_args["sent_id"]])