import torch import torch.nn.functional as F from torch import nn from common.utils import HiddenData from model.decoder.interaction.base_interaction import BaseInteraction class BiModelInteraction(BaseInteraction): def __init__(self, **config): super().__init__(**config) self.intent_lstm = nn.LSTM(input_size=self.config["input_dim"], hidden_size=self.config["output_dim"], batch_first=True, num_layers=1) self.slot_lstm = nn.LSTM(input_size=self.config["input_dim"] + self.config["output_dim"], hidden_size=self.config["output_dim"], num_layers=1) def forward(self, encode_hidden: HiddenData, **kwargs): slot_hidden = encode_hidden.get_slot_hidden_state() intent_hidden_detached = encode_hidden.get_intent_hidden_state().clone().detach() seq_lens = encode_hidden.inputs.attention_mask.sum(-1) batch = slot_hidden.size(0) length = slot_hidden.size(1) dec_init_out = torch.zeros(batch, 1, self.config["output_dim"]).to(slot_hidden.device) hidden_state = (torch.zeros(1, 1, self.config["output_dim"]).to(slot_hidden.device), torch.zeros(1, 1, self.config["output_dim"]).to(slot_hidden.device)) slot_hidden = torch.cat((slot_hidden, intent_hidden_detached), dim=-1).transpose(1, 0) # 50 x batch x feature_size slot_drop = F.dropout(slot_hidden, self.config["dropout_rate"]) all_out = [] for i in range(length): if i == 0: out, hidden_state = self.slot_lstm(torch.cat((slot_drop[i].unsqueeze(1), dec_init_out), dim=-1), hidden_state) else: out, hidden_state = self.slot_lstm(torch.cat((slot_drop[i].unsqueeze(1), out), dim=-1), hidden_state) all_out.append(out) slot_output = torch.cat(all_out, dim=1) # batch x 50 x feature_size intent_hidden = torch.cat((encode_hidden.get_intent_hidden_state(), encode_hidden.get_slot_hidden_state().clone().detach()), dim=-1) intent_drop = F.dropout(intent_hidden, self.config["dropout_rate"]) intent_lstm_output, _ = self.intent_lstm(intent_drop) intent_output = F.dropout(intent_lstm_output, self.config["dropout_rate"]) output_list = [] for index, slen in enumerate(seq_lens): output_list.append(intent_output[index, slen - 1, :].unsqueeze(0)) encode_hidden.update_intent_hidden_state(torch.cat(output_list, dim=0)) encode_hidden.update_slot_hidden_state(slot_output) return encode_hidden class BiModelWithoutDecoderInteraction(BaseInteraction): def forward(self, encode_hidden: HiddenData, **kwargs): slot_hidden = encode_hidden.get_slot_hidden_state() intent_hidden_detached = encode_hidden.get_intent_hidden_state().clone().detach() seq_lens = encode_hidden.inputs.attention_mask.sum(-1) slot_hidden = torch.cat((slot_hidden, intent_hidden_detached), dim=-1) # 50 x batch x feature_size slot_output = F.dropout(slot_hidden, self.config["dropout_rate"]) intent_hidden = torch.cat((encode_hidden.get_intent_hidden_state(), encode_hidden.get_slot_hidden_state().clone().detach()), dim=-1) intent_output = F.dropout(intent_hidden, self.config["dropout_rate"]) output_list = [] for index, slen in enumerate(seq_lens): output_list.append(intent_output[index, slen - 1, :].unsqueeze(0)) encode_hidden.update_intent_hidden_state(torch.cat(output_list, dim=0)) encode_hidden.update_slot_hidden_state(slot_output) return encode_hidden