Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
import numpy as np
|
|
|
4 |
from PIL import Image
|
5 |
-
import spaces
|
6 |
import torch
|
7 |
import torch.nn.functional as F
|
8 |
from torchvision.transforms import Compose
|
@@ -21,7 +21,6 @@ css = """
|
|
21 |
#img-display-output {
|
22 |
max-height: 80vh;
|
23 |
}
|
24 |
-
|
25 |
"""
|
26 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
27 |
model = DPT_DINOv2(encoder='vitl', features=256, out_channels=[256, 512, 1024, 1024]).to(DEVICE).eval()
|
@@ -29,7 +28,6 @@ model.load_state_dict(torch.load('checkpoints/depth_anything_vitl14.pth'))
|
|
29 |
|
30 |
title = "# Depth Anything"
|
31 |
description = """Official demo for **Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data**.
|
32 |
-
|
33 |
Please refer to our [paper](), [project page](https://depth-anything.github.io), or [github](https://github.com/LiheYoung/Depth-Anything) for more details."""
|
34 |
|
35 |
transform = Compose([
|
@@ -47,7 +45,6 @@ transform = Compose([
|
|
47 |
])
|
48 |
|
49 |
|
50 |
-
@spaces.GPU
|
51 |
@torch.no_grad()
|
52 |
def predict_depth(model, image):
|
53 |
return model(image)
|
@@ -85,9 +82,13 @@ with gr.Blocks(css=css) as demo:
|
|
85 |
return [colored_depth, tmp.name]
|
86 |
|
87 |
submit.click(on_submit, inputs=[input_image], outputs=[depth_image, raw_file])
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
90 |
|
91 |
|
92 |
if __name__ == '__main__':
|
93 |
demo.queue().launch()
|
|
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
+
import os
|
5 |
from PIL import Image
|
|
|
6 |
import torch
|
7 |
import torch.nn.functional as F
|
8 |
from torchvision.transforms import Compose
|
|
|
21 |
#img-display-output {
|
22 |
max-height: 80vh;
|
23 |
}
|
|
|
24 |
"""
|
25 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
26 |
model = DPT_DINOv2(encoder='vitl', features=256, out_channels=[256, 512, 1024, 1024]).to(DEVICE).eval()
|
|
|
28 |
|
29 |
title = "# Depth Anything"
|
30 |
description = """Official demo for **Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data**.
|
|
|
31 |
Please refer to our [paper](), [project page](https://depth-anything.github.io), or [github](https://github.com/LiheYoung/Depth-Anything) for more details."""
|
32 |
|
33 |
transform = Compose([
|
|
|
45 |
])
|
46 |
|
47 |
|
|
|
48 |
@torch.no_grad()
|
49 |
def predict_depth(model, image):
|
50 |
return model(image)
|
|
|
82 |
return [colored_depth, tmp.name]
|
83 |
|
84 |
submit.click(on_submit, inputs=[input_image], outputs=[depth_image, raw_file])
|
85 |
+
|
86 |
+
example_files = os.listdir('examples')
|
87 |
+
example_files.sort()
|
88 |
+
example_files = [os.path.join('examples', filename) for filename in example_files]
|
89 |
+
examples = gr.Examples(examples=example_files, inputs=[input_image])
|
90 |
|
91 |
|
92 |
if __name__ == '__main__':
|
93 |
demo.queue().launch()
|
94 |
+
|