# conda create -n IMH-XGBoost conda-forge::huggingface_hub # pip install -r requirements.txt -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple import os # 获取模型 if not os.path.exists('xgb.baseline.model.json'): from huggingface_hub import login, snapshot_download login(token=os.environ.get("HF_TOKEN")) snapshot_download(repo_id='Limour-blog/IMH-XGBoost', local_dir=r'.', allow_patterns='xgb.baseline.model.json') import xgboost as xgb import numpy as np clf = xgb.XGBClassifier(enable_categorical=True) clf.load_model(r"xgb.baseline.model.json") def limit(_value, _min, _max): return min(max(_value, _min), _max) def args2Array( BSA=1.824, CTNT=4.715, # _0 CK_MB=200.5, # _0 CRP=18.01, # _1 PD_DIMER=1.047, NT_PROBNP=883.6, # _3 ARRHYTHMIA=0, APOE=36.76, MHR=0.8378 ): BSA = limit(BSA, 1.401, 2.231) BSA = (BSA - 1.824) / 0.1654 CTNT = limit(CTNT, -9.566, 19.58) CTNT = (CTNT - 4.715) / 3.877 CK_MB = limit(CK_MB, -213, 571) CK_MB = (CK_MB - 200.5) / 154.3 CRP = limit(CRP, -25.04, 55.86) CRP = (CRP - 18.01) / 17.53 PD_DIMER = limit(PD_DIMER, -1.131, 2.959) PD_DIMER = (PD_DIMER - 1.047) / 0.8045 NT_PROBNP = limit(NT_PROBNP, -610.1, 2106) NT_PROBNP = (NT_PROBNP - 883.6) / 625.8 APOE = limit(APOE, 3.625, 68.62) APOE = (APOE - 36.76) / 13.85 MHR = limit(MHR, -0.06439, 1.683) MHR = (MHR - 0.8378) / 0.3103 return np.array([[BSA, CTNT, CK_MB, CRP, PD_DIMER, NT_PROBNP, ARRHYTHMIA, APOE, MHR]]) def predict(_array): return float(clf.predict_proba(_array)[0,1]) # 测试模型预测阳性正确 assert predict(args2Array( BSA=1.99, CTNT=10, # _0 CK_MB=374, # _0 CRP=14.4, # _1 PD_DIMER=0.88, NT_PROBNP=463.7, # _3 ARRHYTHMIA=0, APOE=37, MHR=0.8378 )) >= 0.72 # 测试模型预测阴性正确 assert predict(args2Array( BSA=1.51, CTNT=1.53, # _0 CK_MB=95, # _0 CRP=4.9, # _1 PD_DIMER=1.4, NT_PROBNP=519.2, # _3 ARRHYTHMIA=0, APOE=36.76, MHR=0.5581 )) < 0.72 import gradio as gr # ========== 完整版的模型 ========== with gr.Blocks() as complete_model: with gr.Row(): g_BSA = gr.Number(label="BSA", scale=1, value=1.824, info="患者的体表面积, 缺失请保持默认值", interactive=True) g_ARRHYTHMIA = gr.Checkbox(label="ARRHYTHMIA", scale=1, value=False, info="患者是否发生恶性心律失常或传导阻滞, 缺失请保持默认值", interactive=True) g_PD_DIMER = gr.Number(label="PD_DIMER", scale=1, value=1.047, info="PCI术后D-二聚体峰值, 缺失请保持默认值", interactive=True) with gr.Row(): g_CTNT = gr.Number(label="CTNT", scale=1, value=4.715, info="PCI术后即刻的CTNT值, 缺失请保持默认值", interactive=True) g_CK_MB = gr.Number(label="CK_MB", scale=1, value=200.5, info="PCI术后即刻的CK_MB值, 缺失请保持默认值", interactive=True) g_NT_PROBNP = gr.Number(label="NT_PROBNP", scale=1, value=883.6, info="PCI术后36小时的NT_PROBNP值, 缺失请保持默认值", interactive=True) with gr.Row(): g_CRP = gr.Number(label="CRP", scale=1, value=18.01, info="PCI术后24小时的CRP值, 缺失请保持默认值", interactive=True) g_APOE = gr.Number(label="APOE", scale=1, value=36.76, info="患者血脂APOE值, 缺失请保持默认值", interactive=True) g_MHR = gr.Number(label="MHR", scale=1, value=0.8378, info="单核细胞与高密度脂蛋白胆固醇比值, 缺失请保持默认值", interactive=True) with gr.Row(): g_output1 = gr.Number(label="XGB.predict_proba", scale=1, interactive=False, info="cutoff值为0.72") g_output2 = gr.Textbox(label="结论", scale=1, interactive=False, info="预测患者IMH为阳性或阴性") g_calc = gr.Button("计算", variant="primary", size='lg') def btn_calc( BSA, CTNT, CK_MB, CRP, PD_DIMER, NT_PROBNP, ARRHYTHMIA, APOE, MHR ): res1 = predict(args2Array( BSA=BSA, CTNT=CTNT, # _0 CK_MB=CK_MB, # _0 CRP=CRP, # _1 PD_DIMER=PD_DIMER, NT_PROBNP=NT_PROBNP, # _3 ARRHYTHMIA = (1 if ARRHYTHMIA else 0), APOE=APOE, MHR=MHR )) if res1 >= 0.72: res2 = '阳性' else: res2 = '阴性' return round(res1, 4), res2 g_calc.click( fn = btn_calc, inputs=[g_BSA, g_CTNT, g_CK_MB, g_CRP, g_PD_DIMER, g_NT_PROBNP, g_ARRHYTHMIA, g_APOE, g_MHR], outputs=[g_output1, g_output2] ) # ========== 开始运行 ========== demo = gr.TabbedInterface([complete_model], ["complete_model"]) gr.close_all() demo.queue(api_open=False, max_size=1).launch( server_name = "0.0.0.0", share=False, show_error=True, show_api=False)