Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,34 +3,68 @@ import pickle
|
|
3 |
import pandas as pd
|
4 |
import numpy as np
|
5 |
from sklearn.metrics.pairwise import cosine_similarity
|
|
|
6 |
|
7 |
-
# Load model and data
|
8 |
try:
|
|
|
9 |
with open("recommender_model.pkl", "rb") as f:
|
10 |
model = pickle.load(f)
|
11 |
-
|
|
|
|
|
12 |
post_texts = posts_df["post_text"].astype(str).tolist()
|
13 |
-
|
14 |
except Exception as e:
|
15 |
raise gr.Error(f"Error loading files: {str(e)}")
|
16 |
|
17 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
def recommend_from_input(user_text):
|
19 |
if not user_text.strip():
|
20 |
-
return
|
|
|
|
|
|
|
|
|
|
|
21 |
user_vec = model.encode([user_text])
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
24 |
return posts_df.iloc[top_idxs]["post_text"].tolist()
|
25 |
|
26 |
-
# Gradio
|
27 |
interface = gr.Interface(
|
28 |
fn=recommend_from_input,
|
29 |
-
inputs=gr.Textbox(label="
|
30 |
-
outputs=gr.Dataframe(
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
)
|
35 |
|
36 |
-
|
|
|
|
3 |
import pandas as pd
|
4 |
import numpy as np
|
5 |
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
+
from sentence_transformers import SentenceTransformer # Explicit import
|
7 |
|
8 |
+
# Load model and data
|
9 |
try:
|
10 |
+
# Load your trained SentenceTransformer model
|
11 |
with open("recommender_model.pkl", "rb") as f:
|
12 |
model = pickle.load(f)
|
13 |
+
|
14 |
+
# Load posts dataset
|
15 |
+
posts_df = pd.read_csv("posts_cleaned.csv")
|
16 |
post_texts = posts_df["post_text"].astype(str).tolist()
|
17 |
+
|
18 |
except Exception as e:
|
19 |
raise gr.Error(f"Error loading files: {str(e)}")
|
20 |
|
21 |
+
# Cache embeddings in memory after first computation
|
22 |
+
post_embeddings = None
|
23 |
+
|
24 |
+
def get_embeddings():
|
25 |
+
global post_embeddings
|
26 |
+
if post_embeddings is None:
|
27 |
+
print("Computing embeddings for all posts...")
|
28 |
+
post_embeddings = model.encode(post_texts, convert_to_tensor=False)
|
29 |
+
print("Embeddings computed!")
|
30 |
+
return post_embeddings
|
31 |
+
|
32 |
+
# Prediction function
|
33 |
def recommend_from_input(user_text):
|
34 |
if not user_text.strip():
|
35 |
+
return []
|
36 |
+
|
37 |
+
# Get embeddings (computes only once)
|
38 |
+
embeddings = get_embeddings()
|
39 |
+
|
40 |
+
# Encode user input
|
41 |
user_vec = model.encode([user_text])
|
42 |
+
|
43 |
+
# Calculate similarities
|
44 |
+
sims = cosine_similarity(user_vec, embeddings)[0]
|
45 |
+
top_idxs = sims.argsort()[-5:][::-1] # Top 5 most similar posts
|
46 |
+
|
47 |
+
# Return as list of strings
|
48 |
return posts_df.iloc[top_idxs]["post_text"].tolist()
|
49 |
|
50 |
+
# Gradio Interface
|
51 |
interface = gr.Interface(
|
52 |
fn=recommend_from_input,
|
53 |
+
inputs=gr.Textbox(label="What are you interested in?", placeholder="e.g. Web3 security tips"),
|
54 |
+
outputs=gr.Dataframe(
|
55 |
+
headers=["Recommended Posts"],
|
56 |
+
datatype=["str"],
|
57 |
+
col_count=(1, "fixed")
|
58 |
+
),
|
59 |
+
title="🔍 AI Content Recommender",
|
60 |
+
description="Enter a topic or interest to get personalized post recommendations",
|
61 |
+
examples=[
|
62 |
+
["Blockchain scalability solutions"],
|
63 |
+
["Latest breakthroughs in AI"],
|
64 |
+
["How to write smart contracts"]
|
65 |
+
],
|
66 |
+
allow_flagging="never"
|
67 |
)
|
68 |
|
69 |
+
# Launch with queue for stability
|
70 |
+
interface.launch(share=False)
|