LinDee commited on
Commit
82aa4b3
·
verified ·
1 Parent(s): c84f1fe

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -31
app.py DELETED
@@ -1,31 +0,0 @@
1
- import gradio as gr
2
- import pickle
3
- import pandas as pd
4
- from sklearn.metrics.pairwise import cosine_similarity
5
-
6
- # Load model and dataset
7
- with open("recommender_model.pkl", "rb") as f:
8
- model = pickle.load(f)
9
-
10
- posts_df = pd.read_csv("posts_cleaned.csv") # your full dataset with post content
11
- post_embeddings = model["embeddings"] # precomputed post embeddings
12
- vectorizer = model["vectorizer"] # for transforming user input
13
-
14
- # Predict function
15
- def recommend_from_input(user_text):
16
- user_vec = vectorizer.encode([user_text])
17
- sims = cosine_similarity(user_vec, post_embeddings)[0]
18
- top_idxs = sims.argsort()[-5:][::-1]
19
- top_posts = posts_df.iloc[top_idxs]["post_text"].tolist()
20
- return "\n\n".join(top_posts)
21
-
22
- # Gradio UI
23
- interface = gr.Interface(
24
- fn=recommend_from_input,
25
- inputs="text",
26
- outputs="text",
27
- title="AI Content Recommender",
28
- description="Enter a sample interest or post to receive recommendations"
29
- )
30
-
31
- interface.launch()