Spaces:
Configuration error
Configuration error
import hashlib | |
import os | |
import time | |
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" | |
from pathlib import Path | |
import cv2 | |
import pytest | |
import torch.cuda | |
from lama_cleaner.plugins import ( | |
RemoveBG, | |
RealESRGANUpscaler, | |
GFPGANPlugin, | |
RestoreFormerPlugin, | |
InteractiveSeg, | |
) | |
current_dir = Path(__file__).parent.absolute().resolve() | |
save_dir = current_dir / "result" | |
save_dir.mkdir(exist_ok=True, parents=True) | |
img_p = current_dir / "bunny.jpeg" | |
img_bytes = open(img_p, "rb").read() | |
bgr_img = cv2.imread(str(img_p)) | |
rgb_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2RGB) | |
def _save(img, name): | |
cv2.imwrite(str(save_dir / name), img) | |
def test_remove_bg(): | |
model = RemoveBG() | |
res = model.forward(bgr_img) | |
_save(res, "test_remove_bg.png") | |
def test_upscale(device): | |
if device == "cuda" and not torch.cuda.is_available(): | |
return | |
if device == "mps" and not torch.backends.mps.is_available(): | |
return | |
model = RealESRGANUpscaler("realesr-general-x4v3", device) | |
res = model.forward(bgr_img, 2) | |
_save(res, f"test_upscale_x2_{device}.png") | |
res = model.forward(bgr_img, 4) | |
_save(res, f"test_upscale_x4_{device}.png") | |
def test_gfpgan(device): | |
if device == "cuda" and not torch.cuda.is_available(): | |
return | |
if device == "mps" and not torch.backends.mps.is_available(): | |
return | |
model = GFPGANPlugin(device) | |
res = model(rgb_img, None, None) | |
_save(res, f"test_gfpgan_{device}.png") | |
def test_restoreformer(device): | |
if device == "cuda" and not torch.cuda.is_available(): | |
return | |
if device == "mps" and not torch.backends.mps.is_available(): | |
return | |
model = RestoreFormerPlugin(device) | |
res = model(rgb_img, None, None) | |
_save(res, f"test_restoreformer_{device}.png") | |
def test_segment_anything(device): | |
if device == "cuda" and not torch.cuda.is_available(): | |
return | |
if device == "mps" and not torch.backends.mps.is_available(): | |
return | |
img_md5 = hashlib.md5(img_bytes).hexdigest() | |
model = InteractiveSeg("vit_l", device) | |
new_mask = model.forward(rgb_img, [[448 // 2, 394 // 2, 1]], img_md5) | |
save_name = f"test_segment_anything_{device}.png" | |
_save(new_mask, save_name) | |
start = time.time() | |
model.forward(rgb_img, [[448 // 2, 394 // 2, 1]], img_md5) | |
print(f"Time for {save_name}: {time.time() - start:.2f}s") | |