Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -7,8 +7,6 @@ from transformers import pipeline
|
|
7 |
import torch
|
8 |
|
9 |
|
10 |
-
|
11 |
-
|
12 |
st.set_page_config(page_title = "Vietnamese Legal Question Answering System", page_icon= "🐧", layout="centered", initial_sidebar_state="collapsed")
|
13 |
|
14 |
st.markdown(
|
@@ -37,7 +35,7 @@ def question_answering(question):
|
|
37 |
print(question)
|
38 |
query_sentence = [question]
|
39 |
query_embedding = st.session_state.model_embedding.encode(query_sentence)
|
40 |
-
k =
|
41 |
D, I = index_loaded.search(query_embedding.astype('float32'), k) # D is distances, I is indices
|
42 |
answer = [question_answerer(question=query_sentence[0], context=articles[I[0][i]], max_answer_len = 256) for i in range(k)]
|
43 |
best_answer = max(answer, key=lambda x: x['score'])
|
|
|
7 |
import torch
|
8 |
|
9 |
|
|
|
|
|
10 |
st.set_page_config(page_title = "Vietnamese Legal Question Answering System", page_icon= "🐧", layout="centered", initial_sidebar_state="collapsed")
|
11 |
|
12 |
st.markdown(
|
|
|
35 |
print(question)
|
36 |
query_sentence = [question]
|
37 |
query_embedding = st.session_state.model_embedding.encode(query_sentence)
|
38 |
+
k =500
|
39 |
D, I = index_loaded.search(query_embedding.astype('float32'), k) # D is distances, I is indices
|
40 |
answer = [question_answerer(question=query_sentence[0], context=articles[I[0][i]], max_answer_len = 256) for i in range(k)]
|
41 |
best_answer = max(answer, key=lambda x: x['score'])
|