Spaces:
Paused
Paused
Upload 4 files
Browse files- Model/NER/VLSP2021/Load_model.py +34 -0
- Model/NER/VLSP2021/Ner_CRF.py +144 -0
- Model/NER/VLSP2021/Predict_Ner.py +210 -0
- Model/NER/VLSP2021/best_model.pt +3 -0
Model/NER/VLSP2021/Load_model.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import RobertaConfig, AutoConfig
|
2 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
3 |
+
from Model.NER.VLSP2021.Ner_CRF import PhoBertCrf,PhoBertSoftmax,PhoBertLstmCrf
|
4 |
+
from Model.NER.VLSP2021.Predict_Ner import ViTagger
|
5 |
+
import torch
|
6 |
+
from spacy import displacy
|
7 |
+
import re
|
8 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
9 |
+
MODEL_MAPPING = {
|
10 |
+
'vinai/phobert-base': {
|
11 |
+
'softmax': PhoBertSoftmax,
|
12 |
+
'crf': PhoBertCrf,
|
13 |
+
'lstm_crf': PhoBertLstmCrf
|
14 |
+
},
|
15 |
+
}
|
16 |
+
if device == 'cpu':
|
17 |
+
checkpoint_data = torch.load('E:/demo_datn/pythonProject1/Model/NER/VLSP2021/best_model.pt', map_location='cpu')
|
18 |
+
else:
|
19 |
+
checkpoint_data = torch.load('E:/demo_datn/pythonProject1/Model/NER/VLSP2021/best_model.pt')
|
20 |
+
|
21 |
+
configs = checkpoint_data['args']
|
22 |
+
print(configs.model_name_or_path)
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained(configs.model_name_or_path)
|
24 |
+
model_clss = MODEL_MAPPING[configs.model_name_or_path][configs.model_arch]
|
25 |
+
config = AutoConfig.from_pretrained(configs.model_name_or_path,
|
26 |
+
num_labels=len(checkpoint_data['classes']),
|
27 |
+
finetuning_task=configs.task)
|
28 |
+
model = model_clss(config=config)
|
29 |
+
model.resize_token_embeddings(len(tokenizer))
|
30 |
+
model.to(device)
|
31 |
+
model.load_state_dict(checkpoint_data['model'],strict=False)
|
32 |
+
print(model)
|
33 |
+
|
34 |
+
|
Model/NER/VLSP2021/Ner_CRF.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, List, Tuple, Any
|
2 |
+
from collections import OrderedDict
|
3 |
+
from transformers import logging, RobertaForTokenClassification
|
4 |
+
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
|
5 |
+
from torchcrf import CRF
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
|
11 |
+
logging.set_verbosity_error()
|
12 |
+
|
13 |
+
import torch
|
14 |
+
|
15 |
+
logging.set_verbosity_error()
|
16 |
+
|
17 |
+
|
18 |
+
class NerOutput(OrderedDict):
|
19 |
+
loss: Optional[torch.FloatTensor] = torch.FloatTensor([0.0])
|
20 |
+
tags: Optional[List[int]] = []
|
21 |
+
|
22 |
+
def __getitem__(self, k):
|
23 |
+
if isinstance(k, str):
|
24 |
+
inner_dict = {k: v for (k, v) in self.items()}
|
25 |
+
return inner_dict[k]
|
26 |
+
else:
|
27 |
+
return self.to_tuple()[k]
|
28 |
+
|
29 |
+
def __setattr__(self, name, value):
|
30 |
+
if name in self.keys() and value is not None:
|
31 |
+
super().__setitem__(name, value)
|
32 |
+
super().__setattr__(name, value)
|
33 |
+
|
34 |
+
def __setitem__(self, key, value):
|
35 |
+
super().__setitem__(key, value)
|
36 |
+
super().__setattr__(key, value)
|
37 |
+
|
38 |
+
def to_tuple(self) -> Tuple[Any]:
|
39 |
+
return tuple(self[k] for k in self.keys())
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
class PhoBertSoftmax(RobertaForTokenClassification):
|
44 |
+
def __init__(self, config, **kwargs):
|
45 |
+
super(PhoBertSoftmax, self).__init__(config=config, **kwargs)
|
46 |
+
self.num_labels = config.num_labels
|
47 |
+
|
48 |
+
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, valid_ids=None,
|
49 |
+
label_masks=None):
|
50 |
+
seq_output = self.roberta(input_ids=input_ids,
|
51 |
+
token_type_ids=token_type_ids,
|
52 |
+
attention_mask=attention_mask,
|
53 |
+
head_mask=None)[0]
|
54 |
+
seq_output = self.dropout(seq_output)
|
55 |
+
logits = self.classifier(seq_output)
|
56 |
+
probs = F.log_softmax(logits, dim=2)
|
57 |
+
label_masks = label_masks.view(-1) != 0
|
58 |
+
seq_tags = torch.masked_select(torch.argmax(probs, dim=2).view(-1), label_masks).tolist()
|
59 |
+
if labels is not None:
|
60 |
+
loss_func = nn.CrossEntropyLoss()
|
61 |
+
loss = loss_func(logits.view(-1, self.num_labels), labels.view(-1))
|
62 |
+
return NerOutput(loss=loss, tags=seq_tags)
|
63 |
+
else:
|
64 |
+
return NerOutput(tags=seq_tags)
|
65 |
+
|
66 |
+
|
67 |
+
class PhoBertCrf(RobertaForTokenClassification):
|
68 |
+
def __init__(self, config):
|
69 |
+
super(PhoBertCrf, self).__init__(config=config)
|
70 |
+
self.num_labels = config.num_labels
|
71 |
+
self.crf = CRF(config.num_labels, batch_first=True)
|
72 |
+
self.init_weights()
|
73 |
+
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, valid_ids=None,
|
74 |
+
label_masks=None):
|
75 |
+
seq_outputs = self.roberta(input_ids=input_ids,
|
76 |
+
token_type_ids=token_type_ids,
|
77 |
+
attention_mask=attention_mask,
|
78 |
+
head_mask=None)[0]
|
79 |
+
|
80 |
+
batch_size, max_len, feat_dim = seq_outputs.shape
|
81 |
+
range_vector = torch.arange(0, batch_size, dtype=torch.long, device=seq_outputs.device).unsqueeze(1)
|
82 |
+
seq_outputs = seq_outputs[range_vector, valid_ids]
|
83 |
+
seq_outputs = self.dropout(seq_outputs)
|
84 |
+
logits = self.classifier(seq_outputs)
|
85 |
+
seq_tags = self.crf.decode(logits, mask=label_masks != 0)
|
86 |
+
|
87 |
+
if labels is not None:
|
88 |
+
log_likelihood = self.crf(logits, labels, mask=label_masks.type(torch.uint8))
|
89 |
+
return NerOutput(loss=-1.0 * log_likelihood, tags=seq_tags)
|
90 |
+
else:
|
91 |
+
return NerOutput(tags=seq_tags)
|
92 |
+
|
93 |
+
|
94 |
+
class PhoBertLstmCrf(RobertaForTokenClassification):
|
95 |
+
def __init__(self, config):
|
96 |
+
super(PhoBertLstmCrf, self).__init__(config=config)
|
97 |
+
self.num_labels = config.num_labels
|
98 |
+
self.lstm = nn.LSTM(input_size=config.hidden_size,
|
99 |
+
hidden_size=config.hidden_size // 2,
|
100 |
+
num_layers=1,
|
101 |
+
batch_first=True,
|
102 |
+
bidirectional=True)
|
103 |
+
self.crf = CRF(config.num_labels, batch_first=True)
|
104 |
+
|
105 |
+
@staticmethod
|
106 |
+
def sort_batch(src_tensor, lengths):
|
107 |
+
"""
|
108 |
+
Sort a minibatch by the length of the sequences with the longest sequences first
|
109 |
+
return the sorted batch targes and sequence lengths.
|
110 |
+
This way the output can be used by pack_padded_sequences(...)
|
111 |
+
"""
|
112 |
+
seq_lengths, perm_idx = lengths.sort(0, descending=True)
|
113 |
+
seq_tensor = src_tensor[perm_idx]
|
114 |
+
_, reversed_idx = perm_idx.sort(0, descending=False)
|
115 |
+
return seq_tensor, seq_lengths, reversed_idx
|
116 |
+
|
117 |
+
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, valid_ids=None,
|
118 |
+
label_masks=None):
|
119 |
+
seq_outputs = self.roberta(input_ids=input_ids,
|
120 |
+
token_type_ids=token_type_ids,
|
121 |
+
attention_mask=attention_mask,
|
122 |
+
head_mask=None)[0]
|
123 |
+
|
124 |
+
batch_size, max_len, feat_dim = seq_outputs.shape
|
125 |
+
seq_lens = torch.sum(label_masks, dim=-1)
|
126 |
+
range_vector = torch.arange(0, batch_size, dtype=torch.long, device=seq_outputs.device).unsqueeze(1)
|
127 |
+
seq_outputs = seq_outputs[range_vector, valid_ids]
|
128 |
+
|
129 |
+
sorted_seq_outputs, sorted_seq_lens, reversed_idx = self.sort_batch(src_tensor=seq_outputs,
|
130 |
+
lengths=seq_lens)
|
131 |
+
packed_words = pack_padded_sequence(sorted_seq_outputs, sorted_seq_lens.cpu(), True)
|
132 |
+
lstm_outs, _ = self.lstm(packed_words)
|
133 |
+
lstm_outs, _ = pad_packed_sequence(lstm_outs, batch_first=True, total_length=max_len)
|
134 |
+
seq_outputs = lstm_outs[reversed_idx]
|
135 |
+
|
136 |
+
seq_outputs = self.dropout(seq_outputs)
|
137 |
+
logits = self.classifier(seq_outputs)
|
138 |
+
seq_tags = self.crf.decode(logits, mask=label_masks != 0)
|
139 |
+
|
140 |
+
if labels is not None:
|
141 |
+
log_likelihood = self.crf(logits, labels, mask=label_masks.type(torch.uint8))
|
142 |
+
return NerOutput(loss=-1.0 * log_likelihood, tags=seq_tags)
|
143 |
+
else:
|
144 |
+
return NerOutput(tags=seq_tags)
|
Model/NER/VLSP2021/Predict_Ner.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from vncorenlp import VnCoreNLP
|
3 |
+
|
4 |
+
from typing import Union
|
5 |
+
from transformers import AutoConfig, AutoTokenizer
|
6 |
+
from Model.NER.VLSP2021.Ner_CRF import PhoBertCrf,PhoBertSoftmax,PhoBertLstmCrf
|
7 |
+
import re
|
8 |
+
import os
|
9 |
+
import torch
|
10 |
+
import itertools
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
MODEL_MAPPING = {
|
14 |
+
'vinai/phobert-base': {
|
15 |
+
'softmax': PhoBertSoftmax,
|
16 |
+
'crf': PhoBertCrf,
|
17 |
+
'lstm_crf': PhoBertLstmCrf
|
18 |
+
},
|
19 |
+
}
|
20 |
+
|
21 |
+
|
22 |
+
def normalize_text(txt: str) -> str:
|
23 |
+
# Remove special character
|
24 |
+
txt = re.sub("\xad|\u200b|\ufeff", "", txt)
|
25 |
+
# Normalize vietnamese accents
|
26 |
+
txt = re.sub(r"òa", "oà", txt)
|
27 |
+
txt = re.sub(r"óa", "oá", txt)
|
28 |
+
txt = re.sub(r"ỏa", "oả", txt)
|
29 |
+
txt = re.sub(r"õa", "oã", txt)
|
30 |
+
txt = re.sub(r"ọa", "oạ", txt)
|
31 |
+
txt = re.sub(r"òe", "oè", txt)
|
32 |
+
txt = re.sub(r"óe", "oé", txt)
|
33 |
+
txt = re.sub(r"ỏe", "oẻ", txt)
|
34 |
+
txt = re.sub(r"õe", "oẽ", txt)
|
35 |
+
txt = re.sub(r"ọe", "oẹ", txt)
|
36 |
+
txt = re.sub(r"ùy", "uỳ", txt)
|
37 |
+
txt = re.sub(r"úy", "uý", txt)
|
38 |
+
txt = re.sub(r"ủy", "uỷ", txt)
|
39 |
+
txt = re.sub(r"ũy", "uỹ", txt)
|
40 |
+
txt = re.sub(r"ụy", "uỵ", txt)
|
41 |
+
txt = re.sub(r"Ủy", "Uỷ", txt)
|
42 |
+
|
43 |
+
txt = re.sub(r'"', '”', txt)
|
44 |
+
|
45 |
+
# Remove multi-space
|
46 |
+
txt = re.sub(" +", " ", txt)
|
47 |
+
return txt.strip()
|
48 |
+
class ViTagger(object):
|
49 |
+
def __init__(self, model_path: Union[str or os.PathLike], no_cuda=False):
|
50 |
+
self.device = 'cuda' if not no_cuda and torch.cuda.is_available() else 'cpu'
|
51 |
+
print("[ViTagger] VnCoreNLP loading ...")
|
52 |
+
self.rdrsegmenter = VnCoreNLP("E:/demo_datn/pythonProject1/VnCoreNLP/VnCoreNLP-1.1.1.jar", annotators="wseg", max_heap_size='-Xmx500m')
|
53 |
+
print("[ViTagger] Model loading ...")
|
54 |
+
self.model, self.tokenizer, self.max_seq_len, self.label2id, self.use_crf = self.load_model(model_path, device=self.device)
|
55 |
+
self.id2label = {idx: label for idx, label in enumerate(self.label2id)}
|
56 |
+
print("[ViTagger] All ready!")
|
57 |
+
|
58 |
+
@staticmethod
|
59 |
+
def load_model(model_path: Union[str or os.PathLike], device='cpu'):
|
60 |
+
if device == 'cpu':
|
61 |
+
checkpoint_data = torch.load(model_path, map_location='cpu')
|
62 |
+
else:
|
63 |
+
checkpoint_data = torch.load(model_path)
|
64 |
+
args = checkpoint_data["args"]
|
65 |
+
max_seq_len = args.max_seq_length
|
66 |
+
use_crf = True if 'crf' in args.model_arch else False
|
67 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=False)
|
68 |
+
config = AutoConfig.from_pretrained(args.model_name_or_path, num_labels=len(args.label2id))
|
69 |
+
model_clss = MODEL_MAPPING[args.model_name_or_path][args.model_arch]
|
70 |
+
model = model_clss(config=config)
|
71 |
+
model.load_state_dict(checkpoint_data['model'],strict=False)
|
72 |
+
model.to(device)
|
73 |
+
model.eval()
|
74 |
+
|
75 |
+
return model, tokenizer, max_seq_len, args.label2id, use_crf
|
76 |
+
|
77 |
+
def preprocess(self, in_raw: str):
|
78 |
+
norm_text = normalize_text(in_raw)
|
79 |
+
sents = []
|
80 |
+
sentences = self.rdrsegmenter.tokenize(norm_text)
|
81 |
+
for sentence in sentences:
|
82 |
+
sents.append(sentence)
|
83 |
+
return sents
|
84 |
+
|
85 |
+
def convert_tensor(self, tokens):
|
86 |
+
seq_len = len(tokens)
|
87 |
+
encoding = self.tokenizer(tokens,
|
88 |
+
padding='max_length',
|
89 |
+
truncation=True,
|
90 |
+
is_split_into_words=True,
|
91 |
+
max_length=self.max_seq_len)
|
92 |
+
if 'vinai/phobert' in self.tokenizer.name_or_path:
|
93 |
+
print(' '.join(tokens))
|
94 |
+
subwords = self.tokenizer.tokenize(' '.join(tokens))
|
95 |
+
valid_ids = np.zeros(len(encoding.input_ids), dtype=int)
|
96 |
+
label_marks = np.zeros(len(encoding.input_ids), dtype=int)
|
97 |
+
i = 1
|
98 |
+
for idx, subword in enumerate(subwords[:self.max_seq_len - 2]):
|
99 |
+
if idx != 0 and subwords[idx - 1].endswith("@@"):
|
100 |
+
continue
|
101 |
+
if self.use_crf:
|
102 |
+
valid_ids[i - 1] = idx + 1
|
103 |
+
else:
|
104 |
+
valid_ids[idx + 1] = 1
|
105 |
+
i += 1
|
106 |
+
else:
|
107 |
+
valid_ids = np.zeros(len(encoding.input_ids), dtype=int)
|
108 |
+
label_marks = np.zeros(len(encoding.input_ids), dtype=int)
|
109 |
+
i = 1
|
110 |
+
word_ids = encoding.word_ids()
|
111 |
+
for idx in range(1, len(word_ids)):
|
112 |
+
if word_ids[idx] is not None and word_ids[idx] != word_ids[idx - 1]:
|
113 |
+
if self.use_crf:
|
114 |
+
valid_ids[i - 1] = idx
|
115 |
+
else:
|
116 |
+
valid_ids[idx] = 1
|
117 |
+
i += 1
|
118 |
+
if self.max_seq_len >= seq_len + 2:
|
119 |
+
label_marks[:seq_len] = [1] * seq_len
|
120 |
+
else:
|
121 |
+
label_marks[:-2] = [1] * (self.max_seq_len - 2)
|
122 |
+
if self.use_crf and label_marks[0] == 0:
|
123 |
+
raise f"{tokens} have mark == 0 at index 0!"
|
124 |
+
item = {key: torch.as_tensor([val]).to(self.device, dtype=torch.long) for key, val in encoding.items()}
|
125 |
+
item['valid_ids'] = torch.as_tensor([valid_ids]).to(self.device, dtype=torch.long)
|
126 |
+
item['label_masks'] = torch.as_tensor([valid_ids]).to(self.device, dtype=torch.long)
|
127 |
+
return item
|
128 |
+
|
129 |
+
def extract_entity_doc(self, in_raw: str):
|
130 |
+
sents = self.preprocess(in_raw)
|
131 |
+
print(sents)
|
132 |
+
entities_doc = []
|
133 |
+
for sent in sents:
|
134 |
+
item = self.convert_tensor(sent)
|
135 |
+
with torch.no_grad():
|
136 |
+
outputs = self.model(**item)
|
137 |
+
entity = None
|
138 |
+
if isinstance(outputs.tags[0], list):
|
139 |
+
tags = list(itertools.chain(*outputs.tags))
|
140 |
+
else:
|
141 |
+
tags = outputs.tags
|
142 |
+
for w, l in list(zip(sent, tags)):
|
143 |
+
w = w.replace("_", " ")
|
144 |
+
tag = self.id2label[l]
|
145 |
+
if not tag == 'O':
|
146 |
+
parts = tag.split('-', 1)
|
147 |
+
prefix = parts[0]
|
148 |
+
tag = parts[1] if len(parts) > 1 else ""
|
149 |
+
if entity is None:
|
150 |
+
entity = (w, tag)
|
151 |
+
else:
|
152 |
+
if entity[-1] == tag:
|
153 |
+
if prefix == 'I':
|
154 |
+
entity = (entity[0] + f' {w}', tag)
|
155 |
+
else:
|
156 |
+
entities_doc.append(entity)
|
157 |
+
entity = (w, tag)
|
158 |
+
else:
|
159 |
+
entities_doc.append(entity)
|
160 |
+
entity = (w, tag)
|
161 |
+
elif entity is not None:
|
162 |
+
entities_doc.append(entity)
|
163 |
+
if w != ' ':
|
164 |
+
entities_doc.append((w, 'O'))
|
165 |
+
entity = None
|
166 |
+
elif w != ' ':
|
167 |
+
entities_doc.append((w, 'O'))
|
168 |
+
entity = None
|
169 |
+
return entities_doc
|
170 |
+
|
171 |
+
|
172 |
+
def __call__(self, in_raw: str):
|
173 |
+
sents = self.preprocess(in_raw)
|
174 |
+
entites = []
|
175 |
+
for sent in sents:
|
176 |
+
item = self.convert_tensor(sent)
|
177 |
+
with torch.no_grad():
|
178 |
+
outputs = self.model(**item)
|
179 |
+
entity = None
|
180 |
+
if isinstance(outputs.tags[0], list):
|
181 |
+
tags = list(itertools.chain(*outputs.tags))
|
182 |
+
else:
|
183 |
+
tags = outputs.tags
|
184 |
+
for w, l in list(zip(sent, tags)):
|
185 |
+
w = w.replace("_", " ")
|
186 |
+
tag = self.id2label[l]
|
187 |
+
if not tag == 'O':
|
188 |
+
prefix, tag = tag.split('-')
|
189 |
+
if entity is None:
|
190 |
+
entity = (w, tag)
|
191 |
+
else:
|
192 |
+
if entity[-1] == tag:
|
193 |
+
if prefix == 'I':
|
194 |
+
entity = (entity[0] + f' {w}', tag)
|
195 |
+
else:
|
196 |
+
entites.append(entity)
|
197 |
+
entity = (w, tag)
|
198 |
+
else:
|
199 |
+
entites.append(entity)
|
200 |
+
entity = (w, tag)
|
201 |
+
elif entity is not None:
|
202 |
+
entites.append(entity)
|
203 |
+
entity = None
|
204 |
+
else:
|
205 |
+
entity = None
|
206 |
+
return entites
|
207 |
+
|
208 |
+
|
209 |
+
|
210 |
+
|
Model/NER/VLSP2021/best_model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ba2ccb63d96cedbc6149174536a295da540b04faefce5d48d6c0b9e248a199d
|
3 |
+
size 538007497
|