Spaces:
Runtime error
Runtime error
File size: 9,616 Bytes
9c48ae2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
# -*- coding: utf-8 -*-
"""
@Time : 2023/5/5 23:08
@Author : alexanderwu
@File : openai.py
@From : https://github.com/geekan/MetaGPT/blob/main/metagpt/provider/openai_api.py
"""
import asyncio
import time
from functools import wraps
from typing import NamedTuple
import openai
import litellm
from autoagents.system.config import CONFIG
from autoagents.system.logs import logger
from autoagents.system.provider.base_gpt_api import BaseGPTAPI
from autoagents.system.utils.singleton import Singleton
from autoagents.system.utils.token_counter import (
TOKEN_COSTS,
count_message_tokens,
count_string_tokens,
)
def retry(max_retries):
def decorator(f):
@wraps(f)
async def wrapper(*args, **kwargs):
for i in range(max_retries):
try:
return await f(*args, **kwargs)
except Exception:
if i == max_retries - 1:
raise
await asyncio.sleep(2 ** i)
return wrapper
return decorator
class RateLimiter:
"""Rate control class, each call goes through wait_if_needed, sleep if rate control is needed"""
def __init__(self, rpm):
self.last_call_time = 0
self.interval = 1.1 * 60 / rpm # Here 1.1 is used because even if the calls are made strictly according to time, they will still be QOS'd; consider switching to simple error retry later
self.rpm = rpm
def split_batches(self, batch):
return [batch[i:i + self.rpm] for i in range(0, len(batch), self.rpm)]
async def wait_if_needed(self, num_requests):
current_time = time.time()
elapsed_time = current_time - self.last_call_time
if elapsed_time < self.interval * num_requests:
remaining_time = self.interval * num_requests - elapsed_time
logger.info(f"sleep {remaining_time}")
await asyncio.sleep(remaining_time)
self.last_call_time = time.time()
class Costs(NamedTuple):
total_prompt_tokens: int
total_completion_tokens: int
total_cost: float
total_budget: float
class CostManager(metaclass=Singleton):
"""计算使用接口的开销"""
def __init__(self):
self.total_prompt_tokens = 0
self.total_completion_tokens = 0
self.total_cost = 0
self.total_budget = 0
def update_cost(self, prompt_tokens, completion_tokens, model):
"""
Update the total cost, prompt tokens, and completion tokens.
Args:
prompt_tokens (int): The number of tokens used in the prompt.
completion_tokens (int): The number of tokens used in the completion.
model (str): The model used for the API call.
"""
self.total_prompt_tokens += prompt_tokens
self.total_completion_tokens += completion_tokens
cost = (
prompt_tokens * TOKEN_COSTS[model]["prompt"]
+ completion_tokens * TOKEN_COSTS[model]["completion"]
) / 1000
self.total_cost += cost
logger.info(f"Total running cost: ${self.total_cost:.3f} | Max budget: ${CONFIG.max_budget:.3f} | "
f"Current cost: ${cost:.3f}, {prompt_tokens=}, {completion_tokens=}")
CONFIG.total_cost = self.total_cost
def get_total_prompt_tokens(self):
"""
Get the total number of prompt tokens.
Returns:
int: The total number of prompt tokens.
"""
return self.total_prompt_tokens
def get_total_completion_tokens(self):
"""
Get the total number of completion tokens.
Returns:
int: The total number of completion tokens.
"""
return self.total_completion_tokens
def get_total_cost(self):
"""
Get the total cost of API calls.
Returns:
float: The total cost of API calls.
"""
return self.total_cost
def get_costs(self) -> Costs:
"""获得所有开销"""
return Costs(self.total_prompt_tokens, self.total_completion_tokens, self.total_cost, self.total_budget)
class OpenAIGPTAPI(BaseGPTAPI, RateLimiter):
"""
Check https://platform.openai.com/examples for examples
"""
def __init__(self, proxy='', api_key=''):
self.proxy = proxy
self.api_key = api_key
self.__init_openai(CONFIG)
self.llm = openai
self.stops = None
self.model = CONFIG.openai_api_model
self._cost_manager = CostManager()
RateLimiter.__init__(self, rpm=self.rpm)
def __init_openai(self, config):
if self.proxy != '':
openai.proxy = self.proxy
else:
litellm.api_key = config.openai_api_key
if self.api_key != '':
litellm.api_key = self.api_key
else:
litellm.api_key = config.openai_api_key
if config.openai_api_base:
litellm.api_base = config.openai_api_base
if config.openai_api_type:
litellm.api_type = config.openai_api_type
litellm.api_version = config.openai_api_version
self.rpm = int(config.get("RPM", 10))
async def _achat_completion_stream(self, messages: list[dict]) -> str:
response = await litellm.acompletion(
**self._cons_kwargs(messages),
stream=True
)
# create variables to collect the stream of chunks
collected_chunks = []
collected_messages = []
# iterate through the stream of events
async for chunk in response:
collected_chunks.append(chunk) # save the event response
chunk_message = chunk['choices'][0]['delta'] # extract the message
collected_messages.append(chunk_message) # save the message
if "content" in chunk_message:
print(chunk_message["content"], end="")
full_reply_content = ''.join([m.get('content', '') for m in collected_messages])
usage = self._calc_usage(messages, full_reply_content)
self._update_costs(usage)
return full_reply_content
def _cons_kwargs(self, messages: list[dict]) -> dict:
if CONFIG.openai_api_type == 'azure':
kwargs = {
"deployment_id": CONFIG.deployment_id,
"messages": messages,
"max_tokens": CONFIG.max_tokens_rsp,
"n": 1,
"stop": self.stops,
"temperature": 0.3
}
else:
kwargs = {
"model": self.model,
"messages": messages,
"max_tokens": CONFIG.max_tokens_rsp,
"n": 1,
"stop": self.stops,
"temperature": 0.3
}
return kwargs
async def _achat_completion(self, messages: list[dict]) -> dict:
rsp = await self.llm.ChatCompletion.acreate(**self._cons_kwargs(messages))
self._update_costs(rsp.get('usage'))
return rsp
def _chat_completion(self, messages: list[dict]) -> dict:
rsp = self.llm.ChatCompletion.create(**self._cons_kwargs(messages))
self._update_costs(rsp)
return rsp
def completion(self, messages: list[dict]) -> dict:
# if isinstance(messages[0], Message):
# messages = self.messages_to_dict(messages)
return self._chat_completion(messages)
async def acompletion(self, messages: list[dict]) -> dict:
# if isinstance(messages[0], Message):
# messages = self.messages_to_dict(messages)
return await self._achat_completion(messages)
@retry(max_retries=6)
async def acompletion_text(self, messages: list[dict], stream=False) -> str:
"""when streaming, print each token in place."""
if stream:
return await self._achat_completion_stream(messages)
rsp = await self._achat_completion(messages)
return self.get_choice_text(rsp)
def _calc_usage(self, messages: list[dict], rsp: str) -> dict:
usage = {}
prompt_tokens = count_message_tokens(messages, self.model)
completion_tokens = count_string_tokens(rsp, self.model)
usage['prompt_tokens'] = prompt_tokens
usage['completion_tokens'] = completion_tokens
return usage
async def acompletion_batch(self, batch: list[list[dict]]) -> list[dict]:
"""返回完整JSON"""
split_batches = self.split_batches(batch)
all_results = []
for small_batch in split_batches:
logger.info(small_batch)
await self.wait_if_needed(len(small_batch))
future = [self.acompletion(prompt) for prompt in small_batch]
results = await asyncio.gather(*future)
logger.info(results)
all_results.extend(results)
return all_results
async def acompletion_batch_text(self, batch: list[list[dict]]) -> list[str]:
"""仅返回纯文本"""
raw_results = await self.acompletion_batch(batch)
results = []
for idx, raw_result in enumerate(raw_results, start=1):
result = self.get_choice_text(raw_result)
results.append(result)
logger.info(f"Result of task {idx}: {result}")
return results
def _update_costs(self, usage: dict):
prompt_tokens = int(usage['prompt_tokens'])
completion_tokens = int(usage['completion_tokens'])
self._cost_manager.update_cost(prompt_tokens, completion_tokens, self.model)
def get_costs(self) -> Costs:
return self._cost_manager.get_costs()
|