File size: 3,483 Bytes
9c48ae2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
@Time    : 2023/5/18 00:40
@Author  : alexanderwu
@File    : token_counter.py
@From    : https://github.com/geekan/MetaGPT/blob/main/metagpt/utils/token_counter.py
ref1: https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
ref2: https://github.com/Significant-Gravitas/Auto-GPT/blob/master/autogpt/llm/token_counter.py
ref3: https://github.com/hwchase17/langchain/blob/master/langchain/chat_models/openai.py
"""
import tiktoken

TOKEN_COSTS = {
    "gpt-3.5-turbo": {"prompt": 0.0015, "completion": 0.002},
    "gpt-3.5-turbo-0301": {"prompt": 0.0015, "completion": 0.002},
    "gpt-3.5-turbo-0613": {"prompt": 0.0015, "completion": 0.002},
    "gpt-3.5-turbo-16k": {"prompt": 0.003, "completion": 0.004},
    "gpt-3.5-turbo-16k-0613": {"prompt": 0.003, "completion": 0.004},
    "gpt-4-0314": {"prompt": 0.03, "completion": 0.06},
    "gpt-4": {"prompt": 0.03, "completion": 0.06},
    "gpt-4-32k": {"prompt": 0.06, "completion": 0.12},
    "gpt-4-32k-0314": {"prompt": 0.06, "completion": 0.12},
    "gpt-4-0613": {"prompt": 0.06, "completion": 0.12},
    "text-embedding-ada-002": {"prompt": 0.0004, "completion": 0.0},
}


def count_message_tokens(messages, model="gpt-3.5-turbo-0613"):
    """Return the number of tokens used by a list of messages."""
    try:
        encoding = tiktoken.encoding_for_model(model)
    except KeyError:
        print("Warning: model not found. Using cl100k_base encoding.")
        encoding = tiktoken.get_encoding("cl100k_base")
    if model in {
        "gpt-3.5-turbo-0613",
        "gpt-3.5-turbo-16k-0613",
        "gpt-4-0314",
        "gpt-4-32k-0314",
        "gpt-4-0613",
        "gpt-4-32k-0613",
        }:
        tokens_per_message = 3
        tokens_per_name = 1
    elif model == "gpt-3.5-turbo-0301":
        tokens_per_message = 4  # every message follows <|start|>{role/name}\n{content}<|end|>\n
        tokens_per_name = -1  # if there's a name, the role is omitted
    elif "gpt-3.5-turbo" in model:
        print("Warning: gpt-3.5-turbo may update over time. Returning num tokens assuming gpt-3.5-turbo-0613.")
        return count_message_tokens(messages, model="gpt-3.5-turbo-0613")
    elif "gpt-4" in model:
        print("Warning: gpt-4 may update over time. Returning num tokens assuming gpt-4-0613.")
        return count_message_tokens(messages, model="gpt-4-0613")
    else:
        raise NotImplementedError(
            f"""num_tokens_from_messages() is not implemented for model {model}. See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens."""
        )
    num_tokens = 0
    for message in messages:
        num_tokens += tokens_per_message
        for key, value in message.items():
            num_tokens += len(encoding.encode(value))
            if key == "name":
                num_tokens += tokens_per_name
    num_tokens += 3  # every reply is primed with <|start|>assistant<|message|>
    return num_tokens


def count_string_tokens(string: str, model_name: str) -> int:
    """
    Returns the number of tokens in a text string.

    Args:
        string (str): The text string.
        model_name (str): The name of the encoding to use. (e.g., "gpt-3.5-turbo")

    Returns:
        int: The number of tokens in the text string.
    """
    encoding = tiktoken.encoding_for_model(model_name)
    return len(encoding.encode(string))