#!/usr/bin/env python # -*- coding: utf-8 -*- """ @Time : 2023/5/18 00:40 @Author : alexanderwu @File : token_counter.py @From : https://github.com/geekan/MetaGPT/blob/main/metagpt/utils/token_counter.py ref1: https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb ref2: https://github.com/Significant-Gravitas/Auto-GPT/blob/master/autogpt/llm/token_counter.py ref3: https://github.com/hwchase17/langchain/blob/master/langchain/chat_models/openai.py """ import tiktoken TOKEN_COSTS = { "gpt-3.5-turbo": {"prompt": 0.0015, "completion": 0.002}, "gpt-3.5-turbo-0301": {"prompt": 0.0015, "completion": 0.002}, "gpt-3.5-turbo-0613": {"prompt": 0.0015, "completion": 0.002}, "gpt-3.5-turbo-16k": {"prompt": 0.003, "completion": 0.004}, "gpt-3.5-turbo-16k-0613": {"prompt": 0.003, "completion": 0.004}, "gpt-4-0314": {"prompt": 0.03, "completion": 0.06}, "gpt-4": {"prompt": 0.03, "completion": 0.06}, "gpt-4-32k": {"prompt": 0.06, "completion": 0.12}, "gpt-4-32k-0314": {"prompt": 0.06, "completion": 0.12}, "gpt-4-0613": {"prompt": 0.06, "completion": 0.12}, "text-embedding-ada-002": {"prompt": 0.0004, "completion": 0.0}, } def count_message_tokens(messages, model="gpt-3.5-turbo-0613"): """Return the number of tokens used by a list of messages.""" try: encoding = tiktoken.encoding_for_model(model) except KeyError: print("Warning: model not found. Using cl100k_base encoding.") encoding = tiktoken.get_encoding("cl100k_base") if model in { "gpt-3.5-turbo-0613", "gpt-3.5-turbo-16k-0613", "gpt-4-0314", "gpt-4-32k-0314", "gpt-4-0613", "gpt-4-32k-0613", }: tokens_per_message = 3 tokens_per_name = 1 elif model == "gpt-3.5-turbo-0301": tokens_per_message = 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n tokens_per_name = -1 # if there's a name, the role is omitted elif "gpt-3.5-turbo" in model: print("Warning: gpt-3.5-turbo may update over time. Returning num tokens assuming gpt-3.5-turbo-0613.") return count_message_tokens(messages, model="gpt-3.5-turbo-0613") elif "gpt-4" in model: print("Warning: gpt-4 may update over time. Returning num tokens assuming gpt-4-0613.") return count_message_tokens(messages, model="gpt-4-0613") else: raise NotImplementedError( f"""num_tokens_from_messages() is not implemented for model {model}. See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens.""" ) num_tokens = 0 for message in messages: num_tokens += tokens_per_message for key, value in message.items(): num_tokens += len(encoding.encode(value)) if key == "name": num_tokens += tokens_per_name num_tokens += 3 # every reply is primed with <|start|>assistant<|message|> return num_tokens def count_string_tokens(string: str, model_name: str) -> int: """ Returns the number of tokens in a text string. Args: string (str): The text string. model_name (str): The name of the encoding to use. (e.g., "gpt-3.5-turbo") Returns: int: The number of tokens in the text string. """ encoding = tiktoken.encoding_for_model(model_name) return len(encoding.encode(string))