File size: 5,644 Bytes
d6d7648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
from typing import Optional
from einops import rearrange

import torch
import torch.nn as nn
import torch.nn.functional as F

from diffusers.models.attention import Attention


class InflatedConv3d(nn.Conv2d):
	def forward(self, x):
		video_length = x.shape[2]
		
		x = rearrange(x, "b c f h w -> (b f) c h w")
		x = super().forward(x)
		x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
		
		return x


class FFInflatedConv3d(nn.Conv2d):
	def __init__(self, in_channels, out_channels, kernel_size, **kwargs):
		super().__init__(
			in_channels=in_channels,
			out_channels=out_channels,
			kernel_size=kernel_size,
			**kwargs,
		)
		self.conv_temp = nn.Linear(3 * out_channels, out_channels)
		nn.init.zeros_(self.conv_temp.weight.data)  # initialized to be ones
		nn.init.zeros_(self.conv_temp.bias.data)
	
	def forward(self, x):
		video_length = x.shape[2]
		
		x = rearrange(x, "b c f h w -> (b f) c h w")
		x = super().forward(x)
		
		*_, h, w = x.shape
		x = rearrange(x, "(b f) c h w -> (b h w) f c", f=video_length)
		
		head_frame_index = [0, ] * video_length
		prev_frame_index = torch.clamp(
			torch.arange(video_length) - 1, min=0.0
		).long()
		curr_frame_index = torch.arange(video_length).long()
		conv_temp_nn_input = torch.cat([
			x[:, head_frame_index],
			x[:, prev_frame_index],
			x[:, curr_frame_index]
		], dim=2).contiguous()
		x = x + self.conv_temp(conv_temp_nn_input)
		
		x = rearrange(x, "(b h w) f c -> b c f h w", h=h, w=w)
		
		return x


class FFAttention(Attention):
	r"""
	A cross attention layer.

	Parameters:
		query_dim (`int`): The number of channels in the query.
		cross_attention_dim (`int`, *optional*):
			The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`.
		heads (`int`,  *optional*, defaults to 8): The number of heads to use for multi-head attention.
		dim_head (`int`,  *optional*, defaults to 64): The number of channels in each head.
		dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
		bias (`bool`, *optional*, defaults to False):
			Set to `True` for the query, key, and value linear layers to contain a bias parameter.
	"""
	
	def __init__(
			self,
			*args,
			scale_qk: bool = True,
			processor: Optional["FFAttnProcessor"] = None,
			**kwargs
	):
		super().__init__(*args, scale_qk=scale_qk, processor=processor, **kwargs)
		# set attention processor
		# We use the AttnProcessor by default when torch 2.x is used which uses
		# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
		# but only if it has the default `scale` argument.
		if processor is None:
			processor = FFAttnProcessor()
		self.set_processor(processor)
	
	def forward(self, hidden_states, video_length, encoder_hidden_states=None, attention_mask=None,
	            **cross_attention_kwargs):
		# The `Attention` class can call different attention processors / attention functions
		# here we simply pass along all tensors to the selected processor class
		# For standard processors that are defined here, `**cross_attention_kwargs` is empty
		return self.processor(
			self,
			hidden_states,
			encoder_hidden_states=encoder_hidden_states,
			attention_mask=attention_mask,
			video_length=video_length,
			**cross_attention_kwargs,
		)


class FFAttnProcessor:
	def __init__(self):
		if not hasattr(F, "scaled_dot_product_attention"):
			raise ImportError(
				"FFAttnProcessor requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
	
	def __call__(self, attn: Attention, hidden_states, video_length, encoder_hidden_states=None, attention_mask=None):
		batch_size, sequence_length, _ = (
			hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
		)
		inner_dim = hidden_states.shape[-1]
		
		if attention_mask is not None:
			attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
			# scaled_dot_product_attention expects attention_mask shape to be
			# (batch, heads, source_length, target_length)
			attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
		
		query = attn.to_q(hidden_states)
		
		if encoder_hidden_states is None:
			encoder_hidden_states = hidden_states
		elif attn.norm_cross:
			encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
		
		key = attn.to_k(encoder_hidden_states)
		value = attn.to_v(encoder_hidden_states)
		
		# sparse causal attention
		former_frame_index = torch.arange(video_length) - 1
		former_frame_index[0] = 0
		
		key = rearrange(key, "(b f) d c -> b f d c", f=video_length)
		key = key[:, [0] * video_length].contiguous()
		key = rearrange(key, "b f d c -> (b f) d c")
		
		value = rearrange(value, "(b f) d c -> b f d c", f=video_length)
		value = value[:, [0] * video_length].contiguous()
		value = rearrange(value, "b f d c -> (b f) d c")
		
		head_dim = inner_dim // attn.heads
		query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
		key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
		value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
		
		# the output of sdp = (batch, num_heads, seq_len, head_dim)
		hidden_states = F.scaled_dot_product_attention(
			query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
		)
		
		hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
		hidden_states = hidden_states.to(query.dtype)
		
		# linear proj
		hidden_states = attn.to_out[0](hidden_states)
		# dropout
		hidden_states = attn.to_out[1](hidden_states)
		return hidden_states