ASVA / pipeline.py
Lin Z
init commit
d6d7648
import torchvision.io
from einops import rearrange, repeat
import numpy as np
import inspect
from typing import List, Optional, Union, Tuple
import os
import PIL
import torch
import torchaudio
import torchvision.io
import torchvision.transforms as transforms
from transformers import ImageProcessingMixin
from diffusers.loaders import TextualInversionLoaderMixin
from diffusers.models import AutoencoderKL
from diffusers.schedulers import KarrasDiffusionSchedulers, PNDMScheduler
from diffusers.utils import logging
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.image_processor import VaeImageProcessor
from unet import AudioUNet3DConditionModel
from audio_encoder import ImageBindSegmaskAudioEncoder
from imagebind.data import waveform2melspec
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def waveform_to_melspectrogram(
waveform: Union[np.ndarray, torch.Tensor],
num_mel_bins=128,
target_length=204,
sample_rate=16000,
clip_duration=2.,
mean=-4.268,
std=9.138
):
if isinstance(waveform, np.ndarray):
waveform = torch.from_numpy(waveform)
audio_length = waveform.shape[1]
audio_target_length = int(clip_duration * sample_rate)
audio_start_idx = 0
if audio_length > audio_target_length:
audio_start_idx = (audio_length - audio_target_length) // 2
audio_end_idx = audio_start_idx + audio_target_length
waveform_clip = waveform[:, audio_start_idx:audio_end_idx]
waveform_melspec = waveform2melspec(
waveform_clip, sample_rate, num_mel_bins, target_length
) # (1, n_mel, n_frame)
normalize = transforms.Normalize(mean=mean, std=std)
audio_clip = normalize(waveform_melspec)
return audio_clip # (1, freq, time)
class AudioMelspectrogramExtractor(ImageProcessingMixin):
def __init__(
self,
num_mel_bins=128,
target_length=204,
sample_rate=16000,
clip_duration=2,
mean=-4.268,
std=9.138
):
super().__init__()
self.num_mel_bins = num_mel_bins
self.target_length = target_length
self.sample_rate = sample_rate
self.clip_duration = clip_duration
self.mean = mean
self.std = std
@property
def max_length_s(self) -> int:
return self.clip_duration
@property
def sampling_rate(self) -> int:
return self.sample_rate
def __call__(
self,
waveforms: Union[
np.ndarray,
torch.Tensor,
List[np.ndarray],
List[torch.Tensor]
]
):
if isinstance(waveforms, (np.ndarray, torch.Tensor)) and waveforms.ndim == 2:
waveforms = [waveforms, ]
features = []
for waveform in waveforms:
feature = waveform_to_melspectrogram(
waveform=waveform,
num_mel_bins=self.num_mel_bins,
target_length=self.target_length,
sample_rate=self.sample_rate,
clip_duration=self.clip_duration,
mean=self.mean,
std=self.std
)
features.append(feature)
features = torch.stack(features, dim=0)
return features # (b c n t)
class AudioCondAnimationPipeline(DiffusionPipeline, TextualInversionLoaderMixin):
"""
Pipeline for text-guided image to image generation using stable unCLIP.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
feature_extractor ([`CLIPImageProcessor`]):
Feature extractor for image pre-processing before being encoded.
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`KarrasDiffusionSchedulers`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents.
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
"""
unet: AudioUNet3DConditionModel
scheduler: KarrasDiffusionSchedulers
vae: AutoencoderKL
audio_encoder: ImageBindSegmaskAudioEncoder
def __init__(
self,
unet: AudioUNet3DConditionModel,
scheduler: KarrasDiffusionSchedulers,
vae: AutoencoderKL,
audio_encoder: ImageBindSegmaskAudioEncoder,
null_text_encodings_path: str = ""
):
super().__init__()
self.register_modules(
unet=unet,
scheduler=scheduler,
vae=vae,
audio_encoder=audio_encoder
)
if null_text_encodings_path:
self.null_text_encoding = torch.load(null_text_encodings_path).view(1, 77, 768)
self.melspectrogram_shape = (128, 204)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.audio_processor = AudioMelspectrogramExtractor()
@torch.no_grad()
def encode_text(
self,
text_encodings,
device,
dtype,
do_text_classifier_free_guidance,
do_audio_classifier_free_guidance,
):
if isinstance(text_encodings, (List, Tuple)):
text_encodings = torch.cat(text_encodings)
text_encodings = text_encodings.to(dtype=dtype, device=device)
batch_size = len(text_encodings)
# get unconditional embeddings for classifier free guidance
if do_text_classifier_free_guidance:
if not hasattr(self, "null_text_encoding"):
uncond_token = ""
max_length = text_encodings.shape[1]
uncond_input = self.tokenizer(
uncond_token,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
if hasattr(self.text_encoder.config,
"use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = uncond_input.attention_mask.to(device)
else:
attention_mask = None
uncond_text_encodings = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
uncond_text_encodings = uncond_text_encodings[0]
else:
uncond_text_encodings = self.null_text_encoding
uncond_text_encodings = repeat(uncond_text_encodings, "1 n d -> b n d", b=batch_size).contiguous()
uncond_text_encodings = uncond_text_encodings.to(dtype=dtype, device=device)
if do_text_classifier_free_guidance and do_audio_classifier_free_guidance: # dual cfg
text_encodings = torch.cat([uncond_text_encodings, text_encodings, text_encodings])
elif do_text_classifier_free_guidance: # only text cfg
text_encodings = torch.cat([uncond_text_encodings, text_encodings])
elif do_audio_classifier_free_guidance: # only audio cfg
text_encodings = torch.cat([text_encodings, text_encodings])
return text_encodings
@torch.no_grad()
def encode_audio(
self,
audios: Union[List[np.ndarray], List[torch.Tensor]],
video_length: int = 12,
do_text_classifier_free_guidance: bool = False,
do_audio_classifier_free_guidance: bool = False,
device: torch.device = torch.device("cuda:0"),
dtype: torch.dtype = torch.float32
):
batch_size = len(audios)
melspectrograms = self.audio_processor(audios).to(device=device, dtype=dtype) # (b c n t)
# audio_encodings: (b, n, c)
# audio_masks: (b, s, n)
_, audio_encodings, audio_masks = self.audio_encoder(
melspectrograms, normalize=False, return_dict=False
)
audio_encodings = repeat(audio_encodings, "b n c -> b f n c", f=video_length)
if do_audio_classifier_free_guidance:
null_melspectrograms = torch.zeros(1, 1, *self.melspectrogram_shape).to(device=device, dtype=dtype)
_, null_audio_encodings, null_audio_masks = self.audio_encoder(
null_melspectrograms, normalize=False, return_dict=False
)
null_audio_encodings = repeat(null_audio_encodings, "1 n c -> b f n c", b=batch_size, f=video_length)
if do_text_classifier_free_guidance and do_audio_classifier_free_guidance: # dual cfg
audio_encodings = torch.cat([null_audio_encodings, null_audio_encodings, audio_encodings])
audio_masks = torch.cat([null_audio_masks, null_audio_masks, audio_masks])
elif do_text_classifier_free_guidance: # only text cfg
audio_encodings = torch.cat([audio_encodings, audio_encodings])
audio_masks = torch.cat([audio_masks, audio_masks])
elif do_audio_classifier_free_guidance: # only audio cfg
audio_encodings = torch.cat([null_audio_encodings, audio_encodings])
audio_masks = torch.cat([null_audio_masks, audio_masks])
return audio_encodings, audio_masks
@torch.no_grad()
def encode_latents(self, image: torch.Tensor):
dtype = self.vae.dtype
image = image.to(device=self.device, dtype=dtype)
image_latents = self.vae.encode(image).latent_dist.sample() * self.vae.config.scaling_factor
return image_latents
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
@torch.no_grad()
def decode_latents(self, latents):
dtype = next(self.vae.parameters()).dtype
latents = latents.to(dtype=dtype)
latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1).cpu().float() # ((b t) c h w)
return image
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
def prepare_video_latents(
self,
image_latents: torch.Tensor,
num_channels_latents: int,
video_length: int = 12,
height: int = 256,
width: int = 256,
device: torch.device = torch.device("cuda"),
dtype: torch.dtype = torch.float32,
generator: Optional[torch.Generator] = None,
):
batch_size = len(image_latents)
shape = (
batch_size,
num_channels_latents,
video_length - 1,
height // self.vae_scale_factor,
width // self.vae_scale_factor
)
image_latents = image_latents.unsqueeze(2) # (b c 1 h w)
rand_noise = torch.randn(shape, generator=generator, device=device, dtype=dtype)
noise_latents = torch.cat([image_latents, rand_noise], dim=2)
# scale the initial noise by the standard deviation required by the scheduler
noise_latents = noise_latents * self.scheduler.init_noise_sigma
return noise_latents
@torch.no_grad()
def __call__(
self,
images: List[PIL.Image.Image],
audios: Union[List[np.ndarray], List[torch.Tensor]],
text_encodings: List[torch.Tensor],
video_length: int = 12,
height: int = 256,
width: int = 256,
num_inference_steps: int = 20,
audio_guidance_scale: float = 4.0,
text_guidance_scale: float = 1.0,
generator: Optional[torch.Generator] = None,
return_dict: bool = True
):
# 0. Default height and width to unet
device = self.device
dtype = self.dtype
batch_size = len(images)
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
do_text_classifier_free_guidance = (text_guidance_scale > 1.0)
do_audio_classifier_free_guidance = (audio_guidance_scale > 1.0)
# 1. Encoder text into ((k b) f n d)
text_encodings = self.encode_text(
text_encodings=text_encodings,
device=device,
dtype=dtype,
do_text_classifier_free_guidance=do_text_classifier_free_guidance,
do_audio_classifier_free_guidance=do_audio_classifier_free_guidance
) # ((k b), n, d)
text_encodings = repeat(text_encodings, "b n d -> b t n d", t=video_length).to(device=device, dtype=dtype)
# 2. Encode audio
# audio_encodings: ((k b), n, d)
# audio_masks: ((k b), s, n)
audio_encodings, audio_masks = self.encode_audio(
audios, video_length, do_text_classifier_free_guidance, do_audio_classifier_free_guidance, device, dtype
)
# 3. Prepare image latent
image = self.image_processor.preprocess(images)
image_latents = self.encode_latents(image).to(device=device, dtype=dtype) # (b c h w)
# 4. Prepare unet noising video latents
video_latents = self.prepare_video_latents(
image_latents=image_latents,
num_channels_latents=self.unet.config.in_channels,
video_length=video_length,
height=height,
width=width,
dtype=dtype,
device=device,
generator=generator,
) # (b c f h w)
# 5. Prepare timesteps and extra step kwargs
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta=0.0)
# 7. Denoising loop
for i, t in enumerate(self.progress_bar(timesteps)):
latent_model_input = [video_latents]
if do_text_classifier_free_guidance:
latent_model_input.append(video_latents)
if do_audio_classifier_free_guidance:
latent_model_input.append(video_latents)
latent_model_input = torch.cat(latent_model_input)
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=text_encodings,
audio_encoder_hidden_states=audio_encodings,
audio_attention_mask=audio_masks
).sample
# perform guidance
if do_text_classifier_free_guidance and do_audio_classifier_free_guidance: # dual cfg
noise_pred_uncond, noise_pred_text, noise_pred_text_audio = noise_pred.chunk(3)
noise_pred = noise_pred_uncond + \
text_guidance_scale * (noise_pred_text - noise_pred_uncond) + \
audio_guidance_scale * (noise_pred_text_audio - noise_pred_text)
elif do_text_classifier_free_guidance: # only text cfg
noise_pred_audio, noise_pred_text_audio = noise_pred.chunk(2)
noise_pred = noise_pred_audio + \
text_guidance_scale * (noise_pred_text_audio - noise_pred_audio)
elif do_audio_classifier_free_guidance: # only audio cfg
noise_pred_text, noise_pred_text_audio = noise_pred.chunk(2)
noise_pred = noise_pred_text + \
audio_guidance_scale * (noise_pred_text_audio - noise_pred_text)
# First frame latent will always server as unchanged condition
video_latents[:, :, 1:, :, :] = self.scheduler.step(noise_pred[:, :, 1:, :, :], t,
video_latents[:, :, 1:, :, :],
**extra_step_kwargs).prev_sample
video_latents = video_latents.contiguous()
# 8. Post-processing
video_latents = rearrange(video_latents, "b c f h w -> (b f) c h w")
videos = self.decode_latents(video_latents).detach().cpu()
videos = rearrange(videos, "(b f) c h w -> b f c h w", f=video_length) # value range [0, 1]
if not return_dict:
return videos
return {"videos": videos}
def load_and_transform_images_stable_diffusion(
images: Union[List[np.ndarray], torch.Tensor, np.ndarray],
size=512,
flip=False,
randcrop=False,
normalize=True
):
"""
@images: (List of) np.uint8 images of shape (h, w, 3)
or tensor of shape (b, c, h, w) in [0., 1.0]
"""
assert isinstance(images, (List, torch.Tensor, np.ndarray)), type(images)
if isinstance(images, List):
assert isinstance(images[0], np.ndarray)
assert images[0].dtype == np.uint8
assert images[0].shape[2] == 3
# convert np images into torch float tensor
images = torch.from_numpy(
rearrange(np.stack(images, axis=0), "f h w c -> f c h w")
).float() / 255.
elif isinstance(images, np.ndarray):
assert isinstance(images, np.ndarray)
assert images.dtype == np.uint8
assert images.shape[3] == 3
# convert np images into torch float tensor
images = torch.from_numpy(
rearrange(images, "f h w c -> f c h w")
).float() / 255.
assert images.shape[1] == 3
assert torch.all(images <= 1.0) and torch.all(images >= 0.0)
h, w = images.shape[-2:]
if isinstance(size, int):
target_h, target_w = size, size
else:
target_h, target_w = size
# first crop the image
target_aspect_ratio = float(target_h) / target_w
curr_aspect_ratio = float(h) / w
if target_aspect_ratio >= curr_aspect_ratio: # trim w
trimmed_w = int(h / target_aspect_ratio)
images = images[:, :, :, (w - trimmed_w) // 2: (w - trimmed_w) // 2 + trimmed_w]
else: # trim h
trimmed_h = int(w * target_aspect_ratio)
images = images[:, :, (h - trimmed_h) // 2: (h - trimmed_h) // 2 + trimmed_h]
transform_list = [
transforms.Resize(
size,
interpolation=transforms.InterpolationMode.BILINEAR,
antialias=True
),
]
# assert not randcrop
if randcrop:
transform_list.append(transforms.RandomCrop(size))
else:
transform_list.append(transforms.CenterCrop(size))
if flip:
transform_list.append(transforms.RandomHorizontalFlip(p=1.0))
if normalize:
transform_list.append(transforms.Normalize([0.5], [0.5]))
data_transform = transforms.Compose(transform_list)
images = data_transform(images)
return images
def load_image(image_path):
image = PIL.Image.open(image_path).convert('RGB')
width, height = image.size
if width < height:
new_width = 256
new_height = int((256 / width) * height)
else:
new_height = 256
new_width = int((256 / height) * width)
# Rescale the image
image = image.resize((new_width, new_height), PIL.Image.LANCZOS)
# Crop a 256x256 square from the center
left = (new_width - 256) / 2
top = (new_height - 256) / 2
right = (new_width + 256) / 2
bottom = (new_height + 256) / 2
image = image.crop((left, top, right, bottom))
return image
def load_audio(audio_path):
audio, audio_sr = torchaudio.load(audio_path)
if audio.ndim == 1: audio = audio.unsqueeze(0)
else:
audio = audio.mean(dim=0).unsqueeze(0)
audio = torchaudio.functional.resample(audio, orig_freq=audio_sr, new_freq=16000)
audio = audio[:, :32000].contiguous().float()
if audio.shape[1] < 32000:
audio = torch.cat([audio, torch.ones(1, 32000-audio.shape[1]).float()], dim=1)
return audio.contiguous()
@torch.no_grad()
def generate_videos(
pipeline,
image_path: str = '',
audio_path: str = '',
category_text_encoding: Optional[torch.Tensor] = None,
image_size: Tuple[int, int] = (256, 256),
video_fps: int = 6,
video_num_frame: int = 12,
audio_guidance_scale: float = 4.0,
denoising_step: int = 20,
text_guidance_scale: float = 1.0,
seed: int = 0,
save_path: str = "",
device: torch.device = torch.device("cuda"),
):
image = load_image(image_path)
audio = load_audio(audio_path)
generator = torch.Generator(device=device)
generator.manual_seed(seed)
generated_video = pipeline(
images=[image],
audios=[audio],
text_encodings=[category_text_encoding],
video_length=video_num_frame,
height=image_size[0],
width=image_size[1],
num_inference_steps=denoising_step,
audio_guidance_scale=audio_guidance_scale,
text_guidance_scale=text_guidance_scale,
generator=generator,
return_dict=False
)[0] # (f c h w) in range [0, 1]
generated_video = (generated_video.permute(0, 2, 3, 1).contiguous() * 255).byte()
os.makedirs(os.path.dirname(save_path), exist_ok=True)
torchvision.io.write_video(
filename=save_path,
video_array=generated_video,
fps=video_fps,
audio_array=audio,
audio_fps=16000,
audio_codec="aac"
)
return