File size: 6,529 Bytes
1cc6224
 
 
 
 
 
 
 
6088410
1cc6224
 
 
 
77eab58
ff9d83f
 
 
1cc6224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
214a055
1cc6224
 
 
 
 
 
 
 
 
214a055
1cc6224
 
 
 
 
 
 
 
 
 
 
 
 
 
cd88665
1cc6224
6088410
1cc6224
 
6088410
ff9d83f
 
 
 
1cc6224
b9853cc
1cc6224
f33c9f9
1cc6224
 
197e408
4ce1c25
1cc6224
ff9d83f
 
 
 
 
 
 
 
 
1cc6224
 
 
 
45014a3
1cc6224
156d401
1cc6224
 
b1f112f
7983905
f33c9f9
1cc6224
94cac6f
1cc6224
 
 
 
2ed90b3
1cc6224
b7fae0d
1cc6224
 
 
c65faa0
c826996
 
 
 
 
 
18c58f0
 
c65faa0
c0e5f5a
 
 
 
 
 
 
 
 
 
515c8dc
c04d52c
79870e9
c04d52c
4acf180
eaa3331
4acf180
515c8dc
1cc6224
 
de962ed
1cc6224
d8f7c7b
18c58f0
515c8dc
 
1cc6224
 
c04d52c
45014a3
 
 
 
 
4acf180
89db250
c35dc4b
45014a3
c6493da
1cc6224
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import openai
import os

os.environ["TOKENIZERS_PARALLELISM"] = "false"

# Initialize paths and model identifiers for easy configuration and maintenance
filename = "output_topic_details.txt"  # Path to the file storing literature-specific details
retrieval_model_name = 'output/sentence-transformer-finetuned/'

openai.api_key = os.environ["OPENAI_API_KEY"]

system_message = "You are a literature chatbot specialized in providing information on the context behind classic literature. You will provide basic answers initially, and then, instead of going into deeper detail, encourage students to think deeply about the literature they are reading with leading questions. These questions should also guide the reader as to what they should notice or pay attention to as they continue reading."
# Initial system message to set the behavior of the assistant
messages = [{"role": "system", "content": system_message}]

# Attempt to load the necessary models and provide feedback on success or failure
try:
    retrieval_model = SentenceTransformer(retrieval_model_name)
    print("Models loaded successfully.")
except Exception as e:
    print(f"Failed to load models: {e}")

def load_and_preprocess_text(filename):
    """
    Load and preprocess text from a file, removing empty lines and stripping whitespace.
    """
    try:
        with open(filename, 'r', encoding='utf-8') as file:
            segments = [line.strip() for line in file if line.strip()]
        print("Text loaded and preprocessed successfully.")
        return segments
    except Exception as e:
        print(f"Failed to load or preprocess text: {e}")
        return []

segments = load_and_preprocess_text(filename)

def find_relevant_segment(user_query, segments):
    """
    Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
    This version finds the best match based on the content of the query.
    """
    try:
        # Lowercase the query for better matching
        lower_query = user_query.lower()
        
        # Encode the query and the segments
        query_embedding = retrieval_model.encode(lower_query)
        segment_embeddings = retrieval_model.encode(segments)
        
        # Compute cosine similarities between the query and the segments
        similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
        
        # Find the index of the most similar segment
        best_idx = similarities.argmax()
        
        # Return the most relevant segment
        return segments[best_idx]
    except Exception as e:
        print(f"Error in finding relevant segment: {e}")
        return ""

def generate_response(user_query, relevant_segment):
    """
    Generate a response emphasizing the bot's capability in providing literature information.
    """
    try:
        user_message = f"Here's the information on your book: {relevant_segment}"

        # Append user's message to messages list
        messages.append({"role": "user", "content": user_message})
        
        response = openai.ChatCompletion.create(
            model="gpt-4o",
            messages=messages,
            max_tokens=500,
            temperature=0.2,
            top_p=1,
            frequency_penalty=0.5,
            presence_penalty=0.5,
        )
        
        # Extract the response text
        output_text = response['choices'][0]['message']['content'].strip()
        
        # Append assistant's message to messages list for context
        messages.append({"role": "assistant", "content": output_text})
        
        return output_text
        
    except Exception as e:
        print(f"Error in generating response: {e}")
        return f"Error in generating response: {e}"

def query_model(question):
    """
    Process a question, find relevant information, and generate a response using inputted book title. 
    """
    if question == "":
        return "Welcome to LitBot! Ask me anything about literature, book themes, and the historical context behind your book."
    relevant_segment = find_relevant_segment(question, segments)
    if not relevant_segment: 
        return "Could not find specific information. Please refine your question."
    response = generate_response(question, relevant_segment)
    return response

# Define the welcome message and specific topics the chatbot can provide information about
welcome_message = """
# 📖 Welcome to LitBot!

## An AI-driven assistant for all literature-related queries, LitBot is your new trusted reading guide! Created by Katie, Madeline, and Tiffany of the 2024 Kode With Klossy Los Angeles Camp. 
"""

topics = """
### You can ask anything from the topics below!
- Themes
- Historical Context
- Symbolism
- Potential Reading Challenges
- Controversies
- Book Background Information
"""
books = """
### Feel free to ask about any of these books:
- The Great Gatsby
- The Crucible
- Fahrenheit 451
- Of Mice and Men
- To Kill a Mockingbird
- Romeo and Juliet
- The Catcher in the Rye
- Pride and Prejudice
- Lord of the Flies
- Hamlet
"""
warn = """
### Make sure to put the name of the book you are asking about in your question.
"""
space = """
###
"""


# Setup the Gradio Blocks interface with custom layout components
with gr.Blocks(theme='katiiegomez/litbot-revamped') as demo:
    gr.Markdown(welcome_message)  # Display the formatted welcome message
    with gr.Row():
       # with gr.Column():
            gr.Markdown(books)  # Show the topics on the left side
            gr.Markdown(topics)
    with gr.Row():
        with gr.Column():
            gr.Markdown(warn)
            # book = gr.Dropdown(
            #     ["The Great Gatsby", "The Crucible", "Fahrenheit 451", "Of Mice and Men", "To Kill a Mockingbird", "Romeo and Juliet", "The Catcher in the Rye", "Pride and Prejudice", "Lord of the Flies", "Hamlet"],
            #     label = "Choose a book!",
            #     interactive = True )
            question = gr.Textbox(label="Your question", placeholder="What do you want to ask about?")
            gr.Markdown(space)
            submit_button = gr.Button("Submit")
            answer = gr.Textbox(label="LitBot Response", placeholder="LitBot will respond here...", interactive=False, lines=30)
            submit_button.click(fn=query_model, inputs=question, outputs=answer)
            
    
# Launch the Gradio app to allow user interaction
demo.launch(share=True)