burningdust commited on
Commit
d72c37e
·
0 Parent(s):

Initial commit

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +2 -0
  2. .gitignore +11 -0
  3. README.md +11 -0
  4. app.py +189 -0
  5. examples/001d15cacc774fce2b1d119180b43010.png +3 -0
  6. examples/1aa5fe395096f6e6f146eae2e195589a.png +3 -0
  7. examples/2491ca9b6488b09ba4e4b1b3cfa2d052.png +3 -0
  8. examples/43c73ce43d7a192932db0dda073016ca.png +3 -0
  9. examples/AdobeStock_5889655.jpeg +3 -0
  10. examples/AdobeStock_604103617.jpeg +3 -0
  11. examples/DSCF5565_squared.jpg +3 -0
  12. examples/Screenshot 2024-03-28 232607 pad.png +3 -0
  13. examples/ac0e4e91f8c2006c74b7e95c9611a8c3.png +3 -0
  14. examples/cbaf0b51beba2e66ca2833f6225646c1.png +3 -0
  15. examples/e607ace61c3fd81653b2f05d79ec1e42.png +3 -0
  16. examples/img_18.png +3 -0
  17. examples/sora_flowers.png +3 -0
  18. inference.py +245 -0
  19. matfusion.py +380 -0
  20. models/ldm/__init__.py +0 -0
  21. models/ldm/data/__init__.py +0 -0
  22. models/ldm/data/base.py +40 -0
  23. models/ldm/data/coco.py +253 -0
  24. models/ldm/data/decoder.py +497 -0
  25. models/ldm/data/dummy.py +34 -0
  26. models/ldm/data/imagenet.py +394 -0
  27. models/ldm/data/inpainting/__init__.py +0 -0
  28. models/ldm/data/inpainting/synthetic_mask.py +166 -0
  29. models/ldm/data/laion.py +537 -0
  30. models/ldm/data/legacy.py +196 -0
  31. models/ldm/data/lsun.py +92 -0
  32. models/ldm/data/nerf_like.py +165 -0
  33. models/ldm/data/objaverse_rendered.py +59 -0
  34. models/ldm/data/simple.py +567 -0
  35. models/ldm/extras.py +77 -0
  36. models/ldm/guidance.py +96 -0
  37. models/ldm/lr_scheduler.py +98 -0
  38. models/ldm/models/autoencoder.py +443 -0
  39. models/ldm/models/diffusion/__init__.py +0 -0
  40. models/ldm/models/diffusion/classifier.py +267 -0
  41. models/ldm/models/diffusion/ddim.py +324 -0
  42. models/ldm/models/diffusion/ddpm.py +2024 -0
  43. models/ldm/models/diffusion/plms.py +259 -0
  44. models/ldm/models/diffusion/sampling_util.py +50 -0
  45. models/ldm/modules/attention.py +278 -0
  46. models/ldm/modules/diffusionmodules/__init__.py +0 -0
  47. models/ldm/modules/diffusionmodules/model.py +835 -0
  48. models/ldm/modules/diffusionmodules/openaimodel.py +998 -0
  49. models/ldm/modules/diffusionmodules/util.py +267 -0
  50. models/ldm/modules/distributions/__init__.py +0 -0
.gitattributes ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ weights/** filter=lfs diff=lfs merge=lfs -text
2
+ examples/** filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log/
2
+ out/
3
+
4
+ log
5
+ out
6
+
7
+ flagged
8
+ Synthetic4Relight
9
+ **/__pycache__/
10
+ vis_*/
11
+ src/
README.md ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: IntrinsicAnything
3
+ emoji: 🐸
4
+ colorFrom: green
5
+ colorTo: indigo
6
+ sdk: gradio
7
+ python_version: 3.10.13
8
+ sdk_version: 4.16.0
9
+ app_file: app.py
10
+ pinned: false
11
+ ---
app.py ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from PIL import Image
4
+ from torchvision import transforms
5
+ # from diffusers import StableDiffusionImageVariationPipeline
6
+ from inference import InferenceModel
7
+ from pytorch_lightning import seed_everything
8
+ import numpy as np
9
+ import os
10
+ import rembg
11
+ import spaces
12
+ import sys
13
+ from loguru import logger
14
+
15
+ _SAMPLE_TAB_ID_ = 0
16
+ _HIGHRES_TAB_ID_ = 1
17
+ _FOREGROUND_TAB_ID_ = 2
18
+
19
+
20
+ def set_loggers(level):
21
+ logger.remove()
22
+ logger.add(sys.stderr, level=level)
23
+
24
+ def on_guide_select(evt: gr.SelectData):
25
+ logger.debug(f"You selected {evt.value} at {evt.index} from {evt.target}")
26
+ return [evt.value["image"]['path'], f"Sample {evt.index}"]
27
+
28
+ def on_input_select(evt: gr.SelectData):
29
+ logger.debug(f"You selected {evt.value} at {evt.index} from {evt.target}")
30
+ return evt.value["image"]['path']
31
+
32
+ @spaces.GPU(duration=120)
33
+ def sample_fine(
34
+ input_im,
35
+ domain="Albedo",
36
+ require_mask=False,
37
+ steps=25,
38
+ n_samples=4,
39
+ seed=0,
40
+ guid_img=None,
41
+ vert_split=2,
42
+ hor_split=2,
43
+ overlaps=2,
44
+ guidance_scale=2,
45
+ ):
46
+ if require_mask:
47
+ input_im = remove_bg(input_im)
48
+
49
+ seed_everything(int(seed))
50
+ model = model_dict[domain]
51
+ inp = tform(input_im).to(device).permute(1,2,0)
52
+ guid_img = tform(guid_img).to(device).permute(1,2,0)
53
+ images = model.generation((vert_split, hor_split), overlaps, guid_img[..., :3], inp[..., :3], inp[..., 3:], dps_scale=guidance_scale, uc_score=1.0, ddim_steps=steps, batch_size=1, n_samples=1)
54
+ images["guid_iamges"] = [(guid_img.detach().cpu().numpy() * 255).astype(np.uint8)]
55
+ output = images["out_images"][0]
56
+ return [[(output, "High-res")], gr.Tabs(selected=_HIGHRES_TAB_ID_)]
57
+
58
+ def remove_bg(input_im):
59
+ output = rembg.remove(input_im, session=model_dict["remove_bg"])
60
+ return output
61
+
62
+ @spaces.GPU()
63
+ def sampling(input_im, domain="Albedo", require_mask=False,
64
+ steps=25, n_samples=4, seed=0):
65
+ seed_everything(int(seed))
66
+ model = model_dict[domain]
67
+ if require_mask:
68
+ input_im = remove_bg(input_im)
69
+
70
+ inp = tform(input_im).to(device).permute(1,2,0)
71
+
72
+ images = model.generation((1, 1), 1, None, inp[..., :3], inp[..., 3:], dps_scale=0, uc_score=1, ddim_steps=steps, batch_size=1, n_samples=n_samples)
73
+
74
+ output = [[(images["input_image"][0], "Foreground Object"), (images["input_maskes"][0], "Foreground Maks")],
75
+ [(img,f"Sample {idx}") for idx, img in enumerate(images["out_images"])],
76
+ gr.Tabs(selected=_SAMPLE_TAB_ID_),
77
+ ]
78
+ return output
79
+
80
+ title = "IntrinsicAnything: Learning Diffusion Priors for Inverse Rendering Under Unknown Illumination"
81
+ description = \
82
+ """
83
+ #### Generate intrinsic images (Albedo, Specular Shading) from a single image.
84
+
85
+ ##### Tips
86
+ - You can check the "Auto Mask" box if the input image requires a foreground mask. Or supply your mask with RGBA input.
87
+ - You can optionally generate a high-resolution sample if the input image is of high resolution. We split the original image into `Vertical Splits` by `Horizontal Splits` patches with some `Overlaps` in between. Due to computation constraints for the online demo, we recommend `Vertical Splits` x `Horizontal Splits` to be no more than 6 and to set 2 for `Overlaps`. The denoising steps should at least be set to 80 for high resolution samples.
88
+
89
+ """
90
+
91
+ set_loggers("INFO")
92
+ device = "cuda" if torch.cuda.is_available() else "cpu"
93
+ logger.info(f"Loading Models...")
94
+ model_dict = {
95
+ "Albedo": InferenceModel(ckpt_path="weights/albedo",
96
+ use_ddim=True,
97
+ gpu_id=0),
98
+ "Specular": InferenceModel(ckpt_path="weights/specular",
99
+ use_ddim=True,
100
+ gpu_id=0),
101
+ "remove_bg": rembg.new_session(),
102
+ }
103
+ logger.info(f"All models Loaded!")
104
+
105
+ tform = transforms.Compose([
106
+ transforms.ToTensor()
107
+ ])
108
+
109
+ examples_dir = "examples"
110
+ examples = [[os.path.join(examples_dir, img_name)] for img_name in os.listdir(examples_dir)]
111
+
112
+
113
+ # theme definition
114
+ theme = gr.Theme.from_hub("NoCrypt/miku")
115
+
116
+ theme.body_background_fill = "#FFFFFF "
117
+ theme.body_background_fill_dark = "#000000"
118
+
119
+
120
+ demo = gr.Blocks(title=title, theme=theme)
121
+ with demo:
122
+ with gr.Row():
123
+ with gr.Column(scale=1):
124
+ gr.Markdown('# ' + title)
125
+ gr.Markdown(description)
126
+ with gr.Column():
127
+ with gr.Row():
128
+ with gr.Column(scale=0.8):
129
+ image_input = [gr.Image(image_mode='RGBA', height=256)]
130
+ with gr.Column():
131
+ with gr.Tabs():
132
+ with gr.TabItem("Options"):
133
+ with gr.Column():
134
+ with gr.Row():
135
+ domain_box = gr.Radio([("Albedo", "Albedo"),("Specular", "Specular")],
136
+ value="Albedo",
137
+ label="Type")
138
+ with gr.Column():
139
+ gr.Markdown("### Automatic foreground segmentation")
140
+ mask_box = gr.Checkbox(False, label="Auto Mask")
141
+ options_tab = [
142
+ domain_box,
143
+ mask_box,
144
+ gr.Slider(5, 200, value=50, step=5, label="Denoising Steps (The larger the better results)"),
145
+ gr.Slider(1, 10, value=2, step=1, label="Number of Samples"),
146
+ gr.Number(75424, label="Seed", precision=0),
147
+ ]
148
+ with gr.TabItem("Advanced (High-res)"):
149
+ with gr.Column():
150
+ guiding_img = gr.Image(image_mode='RGBA', label="Guiding Image", interactive=False, height=256, visible=False)
151
+ sample_idx = gr.Textbox(placeholder="Select one from the generate low-res samples", lines=1, interactive=False, label="Guiding Image")
152
+ options_advanced_tab = [
153
+ # high resolution options
154
+ guiding_img,
155
+ gr.Slider(1, 4, value=2, step=1, label="Vertical Splits"),
156
+ gr.Slider(1, 4, value=2, step=1, label="Horizontal Splits"),
157
+ gr.Slider(1, 5, value=2, step=1, label="Overlaps"),
158
+ gr.Slider(0, 5, value=3, step=1, label="Guidance Scale"),]
159
+ with gr.Column(scale=1.0):
160
+ with gr.Tabs() as res_tabs:
161
+ with gr.TabItem("Generated Samples", id=_SAMPLE_TAB_ID_):
162
+ image_output = gr.Gallery(label="Generated Samples", object_fit="contain", columns=[2], rows=[2],height=512, selected_index=0)
163
+ with gr.TabItem("High Resolution Sample", id=_HIGHRES_TAB_ID_):
164
+ image_output_high = gr.Gallery(label="High Resolution Sample", object_fit="contain", columns=[1], rows=[1],height=512, selected_index=0)
165
+ with gr.TabItem("Foreground Object", id=_FOREGROUND_TAB_ID_):
166
+ forground_output = gr.Gallery(label="Foreground Object", object_fit="contain", columns=[2], rows=[1],height=512, selected_index=0)
167
+ with gr.Row():
168
+ generate_button = gr.Button("Generate")
169
+ generate_button_fine = gr.Button("Generate High-Res")
170
+
171
+ examples_gr = gr.Examples(examples=examples, inputs=image_input,
172
+ cache_examples=False, examples_per_page=30,
173
+ label='Examples (Click one to start!)')
174
+
175
+ with gr.Row():
176
+ pass
177
+ # forground_output = gr.Gallery(label="Inputs", preview=False, columns=[2], rows=[1],height=512, selected_index=0)
178
+ # image_output = gr.Gallery(label="Generated Samples", object_fit="cover", columns=[1], rows=[6],height=512, selected_index=0)
179
+ # image_output_high = gr.Gallery(label="High Resolution Sample", object_fit="cover", columns=[1], rows=[1],height=512, selected_index=0)
180
+
181
+ generate_button.click(sampling, inputs=image_input+options_tab,
182
+ outputs=[forground_output, image_output, res_tabs])
183
+ generate_button_fine.click(sample_fine,
184
+ inputs=image_input+options_tab+options_advanced_tab,
185
+ outputs=[image_output_high, res_tabs])
186
+ image_output.select(on_guide_select, None, [guiding_img, sample_idx])
187
+
188
+ logger.info(f"Demo Initilized, Starting...")
189
+ demo.queue().launch()
examples/001d15cacc774fce2b1d119180b43010.png ADDED

Git LFS Details

  • SHA256: 51cca247ded24e868aad723a2b4869a46a4a5774e550f5154254f8c53be9957d
  • Pointer size: 131 Bytes
  • Size of remote file: 350 kB
examples/1aa5fe395096f6e6f146eae2e195589a.png ADDED

Git LFS Details

  • SHA256: a2f96d50a54856b6eb9a716ef4feeecffecf0524ad4242f526bb616a53ae7f7b
  • Pointer size: 131 Bytes
  • Size of remote file: 637 kB
examples/2491ca9b6488b09ba4e4b1b3cfa2d052.png ADDED

Git LFS Details

  • SHA256: 4bfb0ec42eefd93561935044a74c61192e6bbfc8fc3da0cec0b7fc4a3353059b
  • Pointer size: 131 Bytes
  • Size of remote file: 306 kB
examples/43c73ce43d7a192932db0dda073016ca.png ADDED

Git LFS Details

  • SHA256: 07ab29b5c5f330679630e718d4d0adb1e8c77f34b2d3835a097f6d574ce50eb4
  • Pointer size: 131 Bytes
  • Size of remote file: 196 kB
examples/AdobeStock_5889655.jpeg ADDED

Git LFS Details

  • SHA256: 4c5062d31606bdb63a1a1cd1ede2da4475e4f794e77d45b2c72168c4121f6722
  • Pointer size: 131 Bytes
  • Size of remote file: 328 kB
examples/AdobeStock_604103617.jpeg ADDED

Git LFS Details

  • SHA256: 65028ac1c31d0730cdc17511ed4405280db5fa378a8b9154947b1951801f114f
  • Pointer size: 130 Bytes
  • Size of remote file: 88.5 kB
examples/DSCF5565_squared.jpg ADDED

Git LFS Details

  • SHA256: 7a2751e52ae78b251c2a262764821255220c394be770d279aae44b503f13841f
  • Pointer size: 131 Bytes
  • Size of remote file: 140 kB
examples/Screenshot 2024-03-28 232607 pad.png ADDED

Git LFS Details

  • SHA256: bde2685cd05a631da8fcd4c49296deb726e1199a60c7699c112e79d1bc1d4b90
  • Pointer size: 132 Bytes
  • Size of remote file: 1.61 MB
examples/ac0e4e91f8c2006c74b7e95c9611a8c3.png ADDED

Git LFS Details

  • SHA256: ddbffdf3e0da6d120bfe438c3064b840d02d0c0d5a796d3f99f74b6a641f214b
  • Pointer size: 131 Bytes
  • Size of remote file: 198 kB
examples/cbaf0b51beba2e66ca2833f6225646c1.png ADDED

Git LFS Details

  • SHA256: 7133993a10d2b0ef73316d935ece20779026781abae40c449a92bf41786869e3
  • Pointer size: 131 Bytes
  • Size of remote file: 307 kB
examples/e607ace61c3fd81653b2f05d79ec1e42.png ADDED

Git LFS Details

  • SHA256: 150c764e4cf41da916bdb7e5b2ce6ee617abdb181192971a9836652ac58f3d67
  • Pointer size: 131 Bytes
  • Size of remote file: 940 kB
examples/img_18.png ADDED

Git LFS Details

  • SHA256: 6a03d0f6e6b0646cba23ee2e00eb5108d89fa4beba758afcdcf706d63db81f7a
  • Pointer size: 131 Bytes
  • Size of remote file: 109 kB
examples/sora_flowers.png ADDED

Git LFS Details

  • SHA256: 647b9cff27624088b880b569523d1d6adf5b0cc2b180d7382dca5142fccd5659
  • Pointer size: 131 Bytes
  • Size of remote file: 289 kB
inference.py ADDED
@@ -0,0 +1,245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import imageio
3
+ import numpy as np
4
+
5
+ import glob
6
+ import sys
7
+ from typing import Any
8
+ sys.path.insert(1, '.')
9
+
10
+ import argparse
11
+ from pytorch_lightning import seed_everything
12
+ from PIL import Image
13
+ import torch
14
+ from operators import GaussialBlurOperator
15
+ from utils import get_rank
16
+ from torchvision.ops import masks_to_boxes
17
+ from matfusion import MateralDiffusion
18
+ from loguru import logger
19
+
20
+ __MAX_BATCH__ = 4 # 4 for A10
21
+
22
+ def init_model(ckpt_path, ddim, gpu_id):
23
+ # find config
24
+ configs = os.listdir(f'{ckpt_path}/configs')
25
+ model_config = [config for config in configs if "project.yaml" in config][0]
26
+ sds_loss_class = MateralDiffusion(device=gpu_id, fp16=True,
27
+ config=f'{ckpt_path}/configs/{model_config}',
28
+ ckpt=f'{ckpt_path}/checkpoints/last.ckpt', vram_O=False,
29
+ t_range=[0.001, 0.02], opt=None, use_ddim=ddim)
30
+ return sds_loss_class
31
+
32
+ def images_spliter(image, seg_h, seg_w, padding_pixel, padding_val, overlaps=1):
33
+ # split the input images along height and weidth by
34
+ # return a list of images
35
+ h, w, c = image.shape
36
+ h = h - (h%(seg_h*overlaps))
37
+ w = w - (w%(seg_w*overlaps))
38
+
39
+ h_crop = h // seg_h
40
+ w_crop = w // seg_w
41
+ images = []
42
+ positions = []
43
+ img_padded = torch.zeros(h+padding_pixel*2, w+padding_pixel*2, 3, device=image.device) + padding_val
44
+ img_padded[padding_pixel:h+padding_pixel, padding_pixel:w+padding_pixel, :] = image[:h, :w]
45
+
46
+ # overlapped sampling
47
+ seg_h = np.round((h - h_crop) / h_crop * overlaps).astype(int) + 1
48
+ seg_w = np.round((w - w_crop) / w_crop * overlaps).astype(int) + 1
49
+
50
+ h_step = np.round(h_crop / overlaps).astype(int)
51
+ w_step = np.round(w_crop / overlaps).astype(int)
52
+ # print(f"h_step: {h_step}, seg_h: {seg_h}, w_step: {w_step}, seg_w: {seg_w}, img_padded: {img_padded.shape}, image[:h, :w]: {image[:h, :w].shape}")
53
+
54
+ for ind_i in range(0,seg_h):
55
+ i = ind_i * h_step
56
+ for ind_j in range(0,seg_w):
57
+ j = ind_j * w_step
58
+ img_ = img_padded[i:i+h_crop+padding_pixel*2, j:j+w_crop+padding_pixel*2, :]
59
+ images.append(img_)
60
+ positions.append(torch.FloatTensor([i-padding_pixel, j-padding_pixel]).reshape(2))
61
+ return torch.stack(images, dim=0), torch.stack(positions, dim=0), seg_h, seg_w
62
+
63
+ class InferenceModel():
64
+ def __init__(self, ckpt_path, use_ddim, gpu_id=0):
65
+ self.model = init_model(ckpt_path, use_ddim, gpu_id=gpu_id)
66
+ self.gpu_id = gpu_id
67
+ self.split_hw = [1,1]
68
+
69
+ self.padding = 0
70
+ self.padding_crop = 0
71
+
72
+ self.results_list = None
73
+ self.results_output_list = []
74
+ self.image_sizes_list = []
75
+
76
+ def parse_item(self, img_ori, mask_img_ori, guid_images):
77
+ # if mask_img_ori is None:
78
+ # mask_img_ori = read_img(input_name, read_alpha=True)
79
+ # # ensure background is white, same as training data
80
+ # img_ori[~(mask_img_ori[..., 0] > 0.5)] = 1
81
+ img_ori[~(mask_img_ori[..., 0] > 0.5)] = 1
82
+ use_true_mask = (self.split_hw[0] * self.split_hw[1]) <= 1
83
+ self.ori_hw = list(img_ori.shape)
84
+
85
+ # mask cropping
86
+ min_max_uv = masks_to_boxes(mask_img_ori[None, ..., -1] > 0.5).long()
87
+ self.min_uv, self.max_uv = min_max_uv[0, ..., [1,0]], min_max_uv[0, ..., [3,2]]+1
88
+ # print(self.min_uv, self.max_uv)
89
+
90
+ mask_img = mask_img_ori[self.min_uv[0]:self.max_uv[0], self.min_uv[1]:self.max_uv[1]]
91
+ img = img_ori[self.min_uv[0]:self.max_uv[0], self.min_uv[1]:self.max_uv[1]]
92
+
93
+ image_size = list(img.shape)
94
+ if not use_true_mask:
95
+ # for cropping boarder
96
+ self.max_uv[0] = self.max_uv[0] - ((self.max_uv[0]-self.min_uv[0])%(self.split_hw[0]*self.split_overlap))
97
+ self.max_uv[1] = self.max_uv[1] - ((self.max_uv[1]-self.min_uv[1])%(self.split_hw[1]*self.split_overlap))
98
+
99
+ mask_img = mask_img_ori[self.min_uv[0]:self.max_uv[0], self.min_uv[1]:self.max_uv[1]]
100
+ img = img_ori[self.min_uv[0]:self.max_uv[0], self.min_uv[1]:self.max_uv[1]]
101
+
102
+ image_size = list(img.shape)
103
+
104
+
105
+ if not use_true_mask:
106
+ mask_img = torch.ones_like(mask_img)
107
+ mask_img, _ = images_spliter(mask_img[..., [0, 0, 0]], self.split_hw[0], self.split_hw[1], self.padding, not use_true_mask, self.split_overlap)[:2]
108
+
109
+ img, position_indexes, seg_h, seg_w = images_spliter(img, self.split_hw[0], self.split_hw[1], self.padding, 1, self.split_overlap)
110
+ self.split_hw_overlapped = [seg_h, seg_w]
111
+
112
+ logger.info(f"Spliting Size: {image_size}, splits: {self.split_hw}, Overlapped: {self.split_hw_overlapped}")
113
+
114
+ if guid_images is None:
115
+ guid_images = torch.zeros_like(img)
116
+ else:
117
+ guid_images = guid_images[self.min_uv[0]:self.max_uv[0], self.min_uv[1]:self.max_uv[1]]
118
+ guid_images, _ = images_spliter(guid_images, self.split_hw[0], self.split_hw[1], self.padding, 1, self.split_overlap)[:2]
119
+
120
+ return guid_images, img, mask_img[..., :1], image_size, position_indexes
121
+
122
+ def prepare_batch(self, guid_img, img_ori, mask_img_ori, batch_size):
123
+ input_img = []
124
+ cond_img = []
125
+ mask_img = []
126
+ image_size = []
127
+ position_indexes = []
128
+
129
+ for i in range(batch_size):
130
+ _input_img, _cond_img, _mask_img, _image_size, _position_indexes = \
131
+ self.parse_item(img_ori, mask_img_ori, guid_img)
132
+ input_img.append(_input_img)
133
+ cond_img.append(_cond_img)
134
+ mask_img.append(_mask_img)
135
+ position_indexes.append(_position_indexes)
136
+
137
+ image_size += [_image_size] * _input_img.shape[0]
138
+
139
+ input_img = torch.cat(input_img, dim=0).to(self.gpu_id)
140
+ cond_img = torch.cat(cond_img, dim=0).to(self.gpu_id)
141
+ mask_img = torch.cat(mask_img, dim=0).to(self.gpu_id)
142
+ position_indexes = torch.cat(position_indexes, dim=0).to(self.gpu_id)
143
+
144
+ return input_img, cond_img, mask_img, image_size, position_indexes
145
+
146
+
147
+ def assemble_results(self, img_out, img_hw=None, position_index=None, default_val=1):
148
+ results_img = np.zeros((img_hw[0], img_hw[1], 3))
149
+ weight_img = np.zeros((img_hw[0], img_hw[1], 3)) + 1e-5
150
+
151
+ for i in range(position_index.shape[0]):
152
+ # crop out boarder
153
+ crop_h, crop_w = img_out[i].shape[:2]
154
+ pathed_img = img_out[i][self.padding_crop:crop_h-self.padding_crop, self.padding_crop:crop_w-self.padding_crop]
155
+ position_index[i] += self.padding_crop
156
+ crop_h, crop_w = pathed_img.shape[:2]
157
+ crop_x, crop_y = max(position_index[i][0], 0), max(position_index[i][1], 0)
158
+ shape_max = results_img[crop_x:crop_x+crop_h, crop_y:crop_y+crop_w].shape[:2]
159
+ start_crop_x, start_crop_y = abs(min(position_index[i][0], 0)), abs(min(position_index[i][1], 0))
160
+ # print(pathed_img[start_crop_x:shape_max[0], start_crop_y:shape_max[1]].shape, crop_x, crop_y, position_index[i])
161
+ results_img[crop_x:crop_x+shape_max[0]-start_crop_x, crop_y:crop_y+shape_max[1]-start_crop_y] += pathed_img[start_crop_x:shape_max[0], start_crop_y:shape_max[1]]
162
+ weight_img[crop_x:crop_x+crop_h-start_crop_x, crop_y:crop_y+shape_max[1]-start_crop_y] += 1
163
+ img_out = results_img / weight_img
164
+ img_out[weight_img[:,:,0] < 1] = 255
165
+ # print(img_out.shape, weight_img.shape, np.unique(weight_img), pathed_img.dtype)
166
+ img_out_ = (np.zeros((self.ori_hw[0], self.ori_hw[1], 3)) + default_val) * 255
167
+ img_out_[self.min_uv[0]:self.max_uv[0], self.min_uv[1]:self.max_uv[1]] = img_out
168
+ img_out = img_out_
169
+ return img_out
170
+
171
+ def write_batch_img(self, imgs, image_sizes, position_indexes):
172
+ cropped_batch = self.split_hw_overlapped[0] * self.split_hw_overlapped[1]
173
+ if self.results_list is None or self.results_list.shape[0] == 0:
174
+ self.results_list = imgs
175
+ self.position_indexes = position_indexes
176
+ else:
177
+ self.results_list = torch.cat([self.results_list, imgs], dim=0)
178
+ self.position_indexes = torch.cat([self.position_indexes, position_indexes], dim=0)
179
+ self.image_sizes_list += image_sizes
180
+
181
+ valid_len = self.results_list.shape[0] - (self.results_list.shape[0] % cropped_batch)
182
+ out_images = []
183
+ for ind in range(0, valid_len, cropped_batch):
184
+ # assemble results
185
+ img_out = (self.results_list[ind:ind+cropped_batch].detach().cpu().numpy() * 255).astype(np.uint8)
186
+ img_out = self.assemble_results(img_out, self.image_sizes_list[ind], self.position_indexes[ind:ind+cropped_batch].detach().cpu().numpy().astype(int))
187
+ # Image.fromarray(img_out.astype(np.uint8)).save(self.results_output_list[ind])
188
+ out_images.append(img_out.astype(np.uint8))
189
+ self.results_list = self.results_list[valid_len:]
190
+
191
+ self.position_indexes = self.position_indexes[valid_len:]
192
+ self.image_sizes_list = self.image_sizes_list[valid_len:]
193
+
194
+ return out_images
195
+
196
+ def write_batch_input(self, imgs, image_sizes, position_indexes, default_val=1):
197
+ cropped_batch = self.split_hw_overlapped[0] * self.split_hw_overlapped[1]
198
+
199
+ images = []
200
+ valid_len = imgs.shape[0]
201
+ for ind in range(0, valid_len, cropped_batch):
202
+ # assemble results
203
+ img_out = (imgs[ind:ind+cropped_batch].detach().cpu().numpy() * 255).astype(np.uint8)
204
+ img_out = self.assemble_results(img_out, image_sizes[ind], position_indexes.detach().cpu().numpy().astype(int), default_val).astype(np.uint8)
205
+ images.append(img_out)
206
+ return images
207
+
208
+ def generation(self, split_hw, split_overlap, guid_img, img_ori, mask_img_ori, dps_scale, uc_score, ddim_steps, batch_size=32, n_samples=1):
209
+ max_batch = __MAX_BATCH__
210
+ operator = GaussialBlurOperator(61, 3.0, self.gpu_id)
211
+ assert batch_size == 1
212
+ self.split_resolution = None
213
+ self.split_overlap = split_overlap
214
+ self.split_hw = split_hw
215
+
216
+
217
+ # get img hw
218
+ for src_img_id in range(0, 1, batch_size):
219
+ input_img, cond_img, mask_img, image_sizes, position_indexes = self.prepare_batch(guid_img, img_ori, mask_img_ori, 1)
220
+
221
+ input_masked = self.write_batch_input(cond_img, image_sizes, position_indexes)
222
+ input_maskes = self.write_batch_input(mask_img, image_sizes, position_indexes, 0)
223
+
224
+ results_all = []
225
+ for _ in range(n_samples):
226
+ for batch_id in range(0, input_img.shape[0], max_batch):
227
+ embeddings = {}
228
+ embeddings["cond_img"] = cond_img[batch_id:batch_id+max_batch]
229
+
230
+ if (mask_img[batch_id:batch_id+max_batch] > 0.5).sum() == 0:
231
+ results = torch.ones_like(cond_img[batch_id:batch_id+max_batch])
232
+ else:
233
+ results = self.model(embeddings, input_img[batch_id:batch_id+max_batch], mask_img[batch_id:batch_id+max_batch], ddim_steps=ddim_steps,
234
+ guidance_scale=uc_score, dps_scale=dps_scale, as_latent=False, grad_scale=1, operator=operator)
235
+
236
+ out_images = self.write_batch_img(results, image_sizes[batch_id:batch_id+max_batch], position_indexes[batch_id:batch_id+max_batch])
237
+ results_all += out_images
238
+ ret = {
239
+ "input_image": input_masked,
240
+ "input_maskes": input_maskes,
241
+ "out_images": results_all
242
+ }
243
+ return ret
244
+
245
+
matfusion.py ADDED
@@ -0,0 +1,380 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import numpy as np
3
+ from omegaconf import OmegaConf
4
+ from pathlib import Path
5
+ import cv2
6
+
7
+ import torch
8
+ import torch.nn as nn
9
+ import torch.nn.functional as F
10
+ from torch.cuda.amp import custom_bwd, custom_fwd
11
+ from torchvision.utils import save_image
12
+ from torchvision.ops import masks_to_boxes
13
+ from torchvision.transforms import Resize
14
+ from diffusers import DDIMScheduler, DDPMScheduler
15
+ from einops import rearrange, repeat
16
+ from tqdm import tqdm
17
+ import sys
18
+ from os import path
19
+ sys.path.append(path.dirname(path.dirname(path.abspath(__file__))))
20
+ sys.path.append("./models/")
21
+ from loguru import logger
22
+
23
+ from ldm.util import instantiate_from_config
24
+ from ldm.models.diffusion.ddim import DDIMSampler
25
+ from ldm.modules.diffusionmodules.util import extract_into_tensor
26
+
27
+ # load model
28
+ def load_model_from_config(config, ckpt, device, vram_O=False, verbose=True):
29
+
30
+ pl_sd = torch.load(ckpt, map_location='cpu')
31
+
32
+ if 'global_step' in pl_sd and verbose:
33
+ logger.info(f'Global Step: {pl_sd["global_step"]}')
34
+
35
+ sd = pl_sd['state_dict']
36
+
37
+ model = instantiate_from_config(config.model)
38
+ m, u = model.load_state_dict(sd, strict=False)
39
+
40
+ if len(m) > 0:
41
+ logger.warning('missing keys: \n', m)
42
+ if len(u) > 0:
43
+ logger.warning('unexpected keys: \n', u)
44
+
45
+ # manually load ema and delete it to save GPU memory
46
+ if model.use_ema:
47
+ logger.debug('loading EMA...')
48
+ model.model_ema.copy_to(model.model)
49
+ del model.model_ema
50
+
51
+ if vram_O:
52
+ # we don't need decoder
53
+ del model.first_stage_model.decoder
54
+
55
+ torch.cuda.empty_cache()
56
+
57
+ model.eval().to(device)
58
+ # model.first_stage_model.train = True
59
+ # model.first_stage_model.train()
60
+ for param in model.first_stage_model.parameters():
61
+ param.requires_grad = True
62
+
63
+ return model
64
+
65
+ class MateralDiffusion(nn.Module):
66
+ def __init__(self, device, fp16,
67
+ config=None,
68
+ ckpt=None, vram_O=False, t_range=[0.02, 0.98], opt=None, use_ddim=True):
69
+ super().__init__()
70
+
71
+ self.device = device
72
+ self.fp16 = fp16
73
+ self.vram_O = vram_O
74
+ self.t_range = t_range
75
+ self.opt = opt
76
+
77
+ self.config = OmegaConf.load(config)
78
+ # TODO: seems it cannot load into fp16...
79
+ self.model = load_model_from_config(self.config, ckpt, device=self.device, vram_O=vram_O, verbose=True)
80
+
81
+ # timesteps: use diffuser for convenience... hope it's alright.
82
+ self.num_train_timesteps = self.config.model.params.timesteps
83
+
84
+ self.use_ddim = use_ddim
85
+
86
+ if self.use_ddim:
87
+ self.scheduler = DDIMScheduler(
88
+ self.num_train_timesteps,
89
+ self.config.model.params.linear_start,
90
+ self.config.model.params.linear_end,
91
+ beta_schedule='scaled_linear',
92
+ clip_sample=False,
93
+ set_alpha_to_one=False,
94
+ steps_offset=1,
95
+ )
96
+ print("Using DDIM...")
97
+ else:
98
+ self.scheduler = DDPMScheduler(
99
+ self.num_train_timesteps,
100
+ self.config.model.params.linear_start,
101
+ self.config.model.params.linear_end,
102
+ beta_schedule='scaled_linear',
103
+ clip_sample=False,
104
+ )
105
+ print("Using DDPM...")
106
+
107
+
108
+ self.min_step = int(self.num_train_timesteps * t_range[0])
109
+ self.max_step = int(self.num_train_timesteps * t_range[1])
110
+ self.alphas = self.scheduler.alphas_cumprod.to(self.device) # for convenience
111
+
112
+ def get_input(self, x):
113
+ if len(x.shape) == 3:
114
+ x = x[..., None]
115
+ x = rearrange(x, 'b h w c -> b c h w')
116
+ x = x.to(memory_format=torch.contiguous_format).float()
117
+ return x
118
+
119
+ def center_crop(self, img, mask, return_uv=False, mask_ratio=.8, image_size=256):
120
+ margin = np.round((1 - mask_ratio) * image_size).astype(int)
121
+ resizer = Resize([np.round(image_size-margin*2).astype(int),
122
+ np.round(image_size-margin*2).astype(int)])
123
+ # img ~ batch, h, w, 3
124
+ # mask ~ batch, h, w, 3
125
+ # ensure border is 0, as grid sampler only support border or zeros padding
126
+ # But we need the one padding
127
+ batch_size = img.shape[0]
128
+
129
+ min_max_uv = masks_to_boxes(mask[..., -1] > 0.5)
130
+ min_uv, max_uv = min_max_uv[..., [1,0]].long(), (min_max_uv[..., [3,2]] + 1).long()
131
+ # fill back ground to ones
132
+ img = (img + (mask[..., -1:] <= 0.5)).clamp(0, 1)
133
+
134
+ img = rearrange(img, 'b h w c -> b c h w')
135
+ ori_size = torch.tensor(img.shape[-2:]).to(min_max_uv.device).reshape(1, 2).expand(img.shape[0], -1)
136
+
137
+ crooped_imgs = []
138
+
139
+ for batch_idx in range(batch_size):
140
+ # print(min_uv, max_uv, margin)
141
+ img_crop = img[batch_idx][:, min_uv[batch_idx, 0]:max_uv[batch_idx, 0],
142
+ min_uv[batch_idx,1]:max_uv[batch_idx, 1]]
143
+ img_crop = resizer(img_crop)
144
+ img_out = torch.ones(3, image_size, image_size).to(img.device)
145
+ img_out[:, margin:image_size-margin, margin:image_size-margin] = img_crop
146
+ crooped_imgs.append(img_out)
147
+ img_new = torch.stack(crooped_imgs, dim=0)
148
+ img_new = rearrange(img_new, 'b c h w -> b h w c')
149
+ crop_uv = torch.stack([ori_size[:, 0], ori_size[:, 1], min_uv[:, 0], min_uv[:, 1], max_uv[:, 0], max_uv[:, 1], max_uv[:, 1]*0+margin], dim=-1).float()
150
+ if return_uv:
151
+ return img_new, crop_uv
152
+
153
+ return img_new
154
+
155
+ def center_crop_aspect_ratio(self, img, mask, return_uv=False, mask_ratio=.8, image_size=256):
156
+ # img ~ batch, h, w, 3
157
+ # mask ~ batch, h, w, 3
158
+ # ensure border is 0, as grid sampler only support border or zeros padding
159
+ # But we need the one padding
160
+ boarder_mask = torch.zeros_like(mask)
161
+ boarder_mask[:, 1:-1, 1:-1] = 1
162
+ mask = mask * boarder_mask
163
+ # print(f"mask: {mask.shape}, {(mask[..., -1] > 0.5).sum}")
164
+
165
+ min_max_uv = masks_to_boxes(mask[..., -1] > 0.5)
166
+ min_uv, max_uv = min_max_uv[..., [1,0]], min_max_uv[..., [3,2]]
167
+ # fill back ground to ones
168
+ img = (img + (mask[..., -1:] <= 0.5)).clamp(0, 1)
169
+
170
+ img = rearrange(img, 'b h w c -> b c h w')
171
+ ori_size = torch.tensor(img.shape[-2:]).to(min_max_uv.device).reshape(1, 2).expand(img.shape[0], -1)
172
+
173
+ crop_length = torch.div((max_uv - min_uv), 2, rounding_mode='floor')
174
+ half_size = torch.max(crop_length, dim=-1, keepdim=True)[0]
175
+ center_uv = min_uv + crop_length
176
+
177
+ # generate grid
178
+ target_size = image_size
179
+ grid_x, grid_y = torch.meshgrid(torch.arange(0, target_size, 1, device=min_max_uv.device), \
180
+ torch.arange(0, target_size, 1, device=min_max_uv.device), \
181
+ indexing='ij')
182
+ normalized_xy = torch.stack([(grid_x) / (target_size - 1), grid_y / (target_size - 1)], dim=-1) # [0,1]
183
+ normalized_xy = (normalized_xy - 0.5) / mask_ratio + 0.5
184
+
185
+ normalized_xy = normalized_xy[None].expand(img.shape[0], -1, -1, -1)
186
+
187
+ ori_crop_size = 2 * half_size + 1
188
+
189
+ xy_scale = (ori_crop_size-1) / (ori_size - 1)
190
+ normalized_xy = normalized_xy * xy_scale.reshape(-1, 1, 1, 2)[..., [0,1]]
191
+
192
+ xy_shift = (center_uv - half_size) / (ori_size - 1)
193
+ normalized_xy = normalized_xy + xy_shift.reshape(-1, 1, 1, 2)[..., [0,1]]
194
+
195
+ normalized_xy = normalized_xy * 2 - 1 # [-1,1]
196
+ # normalized_xy = normalized_xy / mask_ratio
197
+
198
+ img_new = F.grid_sample(img, normalized_xy[..., [1,0]], padding_mode='border', align_corners=True)
199
+
200
+ crop_uv = torch.stack([ori_size[:, 0], ori_size[:, 1], half_size[..., 0]*0.0 + mask_ratio, half_size[..., 0], center_uv[:, 0], center_uv[:, 1]], dim=-1).float()
201
+ img_new = rearrange(img_new, 'b c h w -> b h w c')
202
+
203
+ if return_uv:
204
+ return img_new, crop_uv
205
+
206
+ return img_new
207
+
208
+ def restore_crop(self, img, img_ori, crop_idx):
209
+ ori_size, min_uv, max_uv, margin = crop_idx[:, :2].long(), crop_idx[:, 2:4].long(), crop_idx[:, 4:6].long(), crop_idx[0, 6].long().item()
210
+ batch_size = img.shape[0]
211
+
212
+ all_images = []
213
+ for batch_idx in range(batch_size):
214
+ img_out = torch.ones(3, ori_size[batch_idx][0], ori_size[batch_idx][1]).to(img.device)
215
+ cropped_size = max_uv[batch_idx] - min_uv[batch_idx]
216
+ resizer = Resize([cropped_size[0], cropped_size[1]])
217
+ net_size = img[batch_idx].shape[-1]
218
+ img_crop = resizer(img[batch_idx][:, margin:net_size-margin, margin:net_size-margin])
219
+
220
+ img_out[:, min_uv[batch_idx, 0]:max_uv[batch_idx, 0],
221
+ min_uv[batch_idx,1]:max_uv[batch_idx, 1]] = img_crop
222
+ all_images.append(img_out)
223
+ all_images = torch.stack(all_images, dim=0)
224
+ all_images = rearrange(all_images, 'b c h w -> b h w c')
225
+ return all_images
226
+
227
+ def restore_crop_aspect_ratio(self, img, img_ori, crop_idx):
228
+ ori_size, mask_ratio, half_size, center_uv = crop_idx[:, :2].long(), crop_idx[:, 2:3], crop_idx[:, 3:4].long(), crop_idx[:, 4:].long()
229
+ img[:, :, 0, :] = 1
230
+ img[:, :, -1, :] = 1
231
+ img[:, :, :, 0] = 1
232
+ img[:, :, :, -1] = 1
233
+
234
+ ori_crop_size = 2*half_size + 1
235
+ grid_x, grid_y = torch.meshgrid(torch.arange(0, ori_size[0, 0].item(), 1, device=img.device), \
236
+ torch.arange(0, ori_size[0, 1].item(), 1, device=img.device), \
237
+ indexing='ij')
238
+ normalized_xy = torch.stack([grid_x, grid_y], dim=-1)[None].expand(img.shape[0], -1, -1, -1) - \
239
+ (center_uv - half_size).reshape(-1, 1, 1, 2)[..., [0,1]]
240
+
241
+ normalized_xy = normalized_xy / (ori_crop_size-1).reshape(-1, 1, 1, 1)
242
+
243
+ normalized_xy = (2*normalized_xy - 1) * mask_ratio.reshape(-1, 1, 1, 1)
244
+
245
+ sample_start = (center_uv - half_size)
246
+ # print(normalized_xy[0][sample_start[0][0], sample_start[0][1]], mask_ratio)
247
+
248
+ img_out = F.grid_sample(img, normalized_xy[..., [1,0]], padding_mode='border', align_corners=True)
249
+ img_out = rearrange(img_out, 'b c h w -> b h w c')
250
+
251
+ return img_out
252
+
253
+ def _image2diffusion(self, embeddings, pred_rgb, mask, image_size=256):
254
+ # pred_rgb: tensor [1, 3, H, W] in [0, 1]
255
+ # assert pred_rgb.w
256
+ assert len(pred_rgb.shape) == 4, f"except 4 dim tensor, got: {pred_rgb.shape}"
257
+
258
+ cond_img = embeddings["cond_img"]
259
+ cond_img = self.center_crop(cond_img, mask, mask_ratio=1.0, image_size=image_size)
260
+
261
+ pred_rgb_256, crop_idx_all = self.center_crop(pred_rgb, mask, return_uv=True, mask_ratio=1.0, image_size=image_size)
262
+
263
+ # print(f"pred_rgb_256: {pred_rgb_256.min()} {pred_rgb_256.max()} {pred_rgb_256.shape} {cond_img.shape}")
264
+
265
+ mask_img = self.center_crop(1 - mask.expand(-1, -1, -1, 3), mask, mask_ratio=1.0, image_size=image_size)
266
+
267
+ xc = self.get_input(cond_img)
268
+ pred_rgb_256 = self.get_input(pred_rgb_256)
269
+
270
+ return pred_rgb_256, crop_idx_all, xc
271
+
272
+ def _get_condition(self, xc, with_uncondition=False):
273
+ # To support classifier-free guidance, randomly drop out only text conditioning 5%, only image conditioning 5%, and both 5%.
274
+ # z.shape: [8, 4, 64, 64]; c.shape: [8, 1, 768]
275
+ # print('=========== xc shape ===========', xc.shape)
276
+
277
+ # print(xc.shape, xc.min(), xc.max(), self.model.use_clip_embdding)
278
+ xc = xc * 2 - 1
279
+ cond = {}
280
+ clip_emb = self.model.get_learned_conditioning(xc if self.model.use_clip_embdding else [""]).detach()
281
+ c_concat = self.model.encode_first_stage((xc.to(self.device))).mode().detach()
282
+ # print(clip_emb.shape, clip_emb.min(), clip_emb.max(), self.model.use_clip_embdding)
283
+ if with_uncondition:
284
+ cond['c_crossattn'] = [torch.cat([torch.zeros_like(clip_emb).to(self.device), clip_emb], dim=0)]
285
+ cond['c_concat'] = [torch.cat([torch.zeros_like(c_concat).to(self.device), c_concat], dim=0)]
286
+ else:
287
+ cond['c_crossattn'] = [clip_emb]
288
+ cond['c_concat'] = [c_concat]
289
+ return cond
290
+
291
+ @torch.no_grad()
292
+ def __call__(self, embeddings, pred_rgb, mask, guidance_scale=3, dps_scale=0.2, as_latent=False, grad_scale=1, save_guidance_path:Path=None,
293
+ ddim_steps=200, ddim_eta=1, operator=None):
294
+ # todo: The upsacle is currectly hard-coded
295
+ upscale = 1
296
+
297
+ # with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
298
+ pred_rgb_256, crop_idx_all, xc = self._image2diffusion(embeddings, pred_rgb, mask, image_size=256*upscale)
299
+ cond = self._get_condition(xc, with_uncondition=True)
300
+ assert pred_rgb_256.shape[-1] == pred_rgb_256.shape[-2], f"Expect image of square size, get {pred_rgb.shape}"
301
+
302
+ latents = torch.randn_like(self.encode_imgs(pred_rgb_256))
303
+
304
+ if self.use_ddim:
305
+ self.scheduler.set_timesteps(ddim_steps)
306
+ else:
307
+ self.scheduler.set_timesteps(self.num_train_timesteps)
308
+
309
+ intermidates = []
310
+
311
+ for i, t in tqdm(enumerate(self.scheduler.timesteps)):
312
+ x_in = torch.cat([latents] * 2)
313
+ t_in = torch.cat([t.view(1).expand(latents.shape[0])] * 2).to(self.device)
314
+
315
+ noise_pred = self.model.apply_model(x_in, t_in, cond)
316
+
317
+ noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
318
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
319
+
320
+ # dps
321
+ if dps_scale > 0:
322
+ with torch.enable_grad():
323
+ t_batch = torch.randint(self.min_step, self.max_step + 1, (latents.shape[0],), dtype=torch.long, device=self.device) * 0 + t
324
+ x_hat_latents = self.model.predict_start_from_noise(latents.requires_grad_(True), t_batch, noise_pred)
325
+ x_hat = self.decode_latents(x_hat_latents)
326
+ x_hat = operator.forward(x_hat)
327
+ norm = torch.linalg.norm((pred_rgb_256-x_hat).reshape(pred_rgb_256.shape[0], -1), dim=-1)
328
+ guidance_score = torch.autograd.grad(norm.sum(), latents, retain_graph=True)[0]
329
+
330
+ if (not save_guidance_path is None) and i % (len(self.scheduler.timesteps)//20) == 0:
331
+ x_t = self.decode_latents(latents)
332
+ intermidates.append(torch.cat([x_hat, x_t, pred_rgb_256, pred_rgb_256-x_hat], dim=-2).detach().cpu())
333
+
334
+ # print("before", noise_pred[0, 2, 10, 16:22], noise_pred.shape, dps_scale)
335
+ logger.debug(f"Guidance loss: {norm}")
336
+ noise_pred = noise_pred + dps_scale * guidance_score
337
+
338
+
339
+ if self.use_ddim:
340
+ latents = self.scheduler.step(noise_pred, t, latents, eta=ddim_eta)['prev_sample']
341
+ else:
342
+ latents = self.scheduler.step(noise_pred.clone().detach(), t, latents)['prev_sample']
343
+ if dps_scale > 0:
344
+ del x_hat
345
+ del guidance_score
346
+ del noise_pred
347
+ del x_hat_latents
348
+ del norm
349
+
350
+ imgs = self.decode_latents(latents)
351
+ viz_images = torch.cat([pred_rgb_256, imgs],dim=-1)[:1]
352
+ if not save_guidance_path is None and len(intermidates) > 0:
353
+ save_image(viz_images, save_guidance_path)
354
+
355
+ viz_images = torch.cat(intermidates,dim=-1)[:1]
356
+ save_image(viz_images, save_guidance_path+"all.jpg")
357
+
358
+ # transform back to original images
359
+ img_ori_size = self.restore_crop(imgs, pred_rgb, crop_idx_all)
360
+ if not save_guidance_path is None:
361
+ img_ori_size_save = rearrange(img_ori_size, 'b h w c -> b c h w')[:1]
362
+ save_image(img_ori_size_save, save_guidance_path+"_out.jpg")
363
+ return img_ori_size
364
+
365
+ def decode_latents(self, latents):
366
+ # zs: [B, 4, 32, 32] Latent space image
367
+ # with self.model.ema_scope():
368
+ imgs = self.model.decode_first_stage(latents)
369
+ imgs = (imgs / 2 + 0.5).clamp(0, 1)
370
+
371
+ return imgs # [B, 3, 256, 256] RGB space image
372
+
373
+ def encode_imgs(self, imgs):
374
+ # imgs: [B, 3, 256, 256] RGB space image
375
+ # with self.model.ema_scope():
376
+ imgs = imgs * 2 - 1
377
+ # latents = torch.cat([self.model.get_first_stage_encoding(self.model.encode_first_stage(img.unsqueeze(0))) for img in imgs], dim=0)
378
+ latents = self.model.get_first_stage_encoding(self.model.encode_first_stage(imgs))
379
+
380
+ return latents # [B, 4, 32, 32] Latent space image
models/ldm/__init__.py ADDED
File without changes
models/ldm/data/__init__.py ADDED
File without changes
models/ldm/data/base.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ from abc import abstractmethod
4
+ from torch.utils.data import Dataset, ConcatDataset, ChainDataset, IterableDataset
5
+
6
+
7
+ class Txt2ImgIterableBaseDataset(IterableDataset):
8
+ '''
9
+ Define an interface to make the IterableDatasets for text2img data chainable
10
+ '''
11
+ def __init__(self, num_records=0, valid_ids=None, size=256):
12
+ super().__init__()
13
+ self.num_records = num_records
14
+ self.valid_ids = valid_ids
15
+ self.sample_ids = valid_ids
16
+ self.size = size
17
+
18
+ print(f'{self.__class__.__name__} dataset contains {self.__len__()} examples.')
19
+
20
+ def __len__(self):
21
+ return self.num_records
22
+
23
+ @abstractmethod
24
+ def __iter__(self):
25
+ pass
26
+
27
+
28
+ class PRNGMixin(object):
29
+ """
30
+ Adds a prng property which is a numpy RandomState which gets
31
+ reinitialized whenever the pid changes to avoid synchronized sampling
32
+ behavior when used in conjunction with multiprocessing.
33
+ """
34
+ @property
35
+ def prng(self):
36
+ currentpid = os.getpid()
37
+ if getattr(self, "_initpid", None) != currentpid:
38
+ self._initpid = currentpid
39
+ self._prng = np.random.RandomState()
40
+ return self._prng
models/ldm/data/coco.py ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import albumentations
4
+ import numpy as np
5
+ from PIL import Image
6
+ from tqdm import tqdm
7
+ from torch.utils.data import Dataset
8
+ from abc import abstractmethod
9
+
10
+
11
+ class CocoBase(Dataset):
12
+ """needed for (image, caption, segmentation) pairs"""
13
+ def __init__(self, size=None, dataroot="", datajson="", onehot_segmentation=False, use_stuffthing=False,
14
+ crop_size=None, force_no_crop=False, given_files=None, use_segmentation=True,crop_type=None):
15
+ self.split = self.get_split()
16
+ self.size = size
17
+ if crop_size is None:
18
+ self.crop_size = size
19
+ else:
20
+ self.crop_size = crop_size
21
+
22
+ assert crop_type in [None, 'random', 'center']
23
+ self.crop_type = crop_type
24
+ self.use_segmenation = use_segmentation
25
+ self.onehot = onehot_segmentation # return segmentation as rgb or one hot
26
+ self.stuffthing = use_stuffthing # include thing in segmentation
27
+ if self.onehot and not self.stuffthing:
28
+ raise NotImplemented("One hot mode is only supported for the "
29
+ "stuffthings version because labels are stored "
30
+ "a bit different.")
31
+
32
+ data_json = datajson
33
+ with open(data_json) as json_file:
34
+ self.json_data = json.load(json_file)
35
+ self.img_id_to_captions = dict()
36
+ self.img_id_to_filepath = dict()
37
+ self.img_id_to_segmentation_filepath = dict()
38
+
39
+ assert data_json.split("/")[-1] in [f"captions_train{self.year()}.json",
40
+ f"captions_val{self.year()}.json"]
41
+ # TODO currently hardcoded paths, would be better to follow logic in
42
+ # cocstuff pixelmaps
43
+ if self.use_segmenation:
44
+ if self.stuffthing:
45
+ self.segmentation_prefix = (
46
+ f"data/cocostuffthings/val{self.year()}" if
47
+ data_json.endswith(f"captions_val{self.year()}.json") else
48
+ f"data/cocostuffthings/train{self.year()}")
49
+ else:
50
+ self.segmentation_prefix = (
51
+ f"data/coco/annotations/stuff_val{self.year()}_pixelmaps" if
52
+ data_json.endswith(f"captions_val{self.year()}.json") else
53
+ f"data/coco/annotations/stuff_train{self.year()}_pixelmaps")
54
+
55
+ imagedirs = self.json_data["images"]
56
+ self.labels = {"image_ids": list()}
57
+ for imgdir in tqdm(imagedirs, desc="ImgToPath"):
58
+ self.img_id_to_filepath[imgdir["id"]] = os.path.join(dataroot, imgdir["file_name"])
59
+ self.img_id_to_captions[imgdir["id"]] = list()
60
+ pngfilename = imgdir["file_name"].replace("jpg", "png")
61
+ if self.use_segmenation:
62
+ self.img_id_to_segmentation_filepath[imgdir["id"]] = os.path.join(
63
+ self.segmentation_prefix, pngfilename)
64
+ if given_files is not None:
65
+ if pngfilename in given_files:
66
+ self.labels["image_ids"].append(imgdir["id"])
67
+ else:
68
+ self.labels["image_ids"].append(imgdir["id"])
69
+
70
+ capdirs = self.json_data["annotations"]
71
+ for capdir in tqdm(capdirs, desc="ImgToCaptions"):
72
+ # there are in average 5 captions per image
73
+ #self.img_id_to_captions[capdir["image_id"]].append(np.array([capdir["caption"]]))
74
+ self.img_id_to_captions[capdir["image_id"]].append(capdir["caption"])
75
+
76
+ self.rescaler = albumentations.SmallestMaxSize(max_size=self.size)
77
+ if self.split=="validation":
78
+ self.cropper = albumentations.CenterCrop(height=self.crop_size, width=self.crop_size)
79
+ else:
80
+ # default option for train is random crop
81
+ if self.crop_type in [None, 'random']:
82
+ self.cropper = albumentations.RandomCrop(height=self.crop_size, width=self.crop_size)
83
+ else:
84
+ self.cropper = albumentations.CenterCrop(height=self.crop_size, width=self.crop_size)
85
+ self.preprocessor = albumentations.Compose(
86
+ [self.rescaler, self.cropper],
87
+ additional_targets={"segmentation": "image"})
88
+ if force_no_crop:
89
+ self.rescaler = albumentations.Resize(height=self.size, width=self.size)
90
+ self.preprocessor = albumentations.Compose(
91
+ [self.rescaler],
92
+ additional_targets={"segmentation": "image"})
93
+
94
+ @abstractmethod
95
+ def year(self):
96
+ raise NotImplementedError()
97
+
98
+ def __len__(self):
99
+ return len(self.labels["image_ids"])
100
+
101
+ def preprocess_image(self, image_path, segmentation_path=None):
102
+ image = Image.open(image_path)
103
+ if not image.mode == "RGB":
104
+ image = image.convert("RGB")
105
+ image = np.array(image).astype(np.uint8)
106
+ if segmentation_path:
107
+ segmentation = Image.open(segmentation_path)
108
+ if not self.onehot and not segmentation.mode == "RGB":
109
+ segmentation = segmentation.convert("RGB")
110
+ segmentation = np.array(segmentation).astype(np.uint8)
111
+ if self.onehot:
112
+ assert self.stuffthing
113
+ # stored in caffe format: unlabeled==255. stuff and thing from
114
+ # 0-181. to be compatible with the labels in
115
+ # https://github.com/nightrome/cocostuff/blob/master/labels.txt
116
+ # we shift stuffthing one to the right and put unlabeled in zero
117
+ # as long as segmentation is uint8 shifting to right handles the
118
+ # latter too
119
+ assert segmentation.dtype == np.uint8
120
+ segmentation = segmentation + 1
121
+
122
+ processed = self.preprocessor(image=image, segmentation=segmentation)
123
+
124
+ image, segmentation = processed["image"], processed["segmentation"]
125
+ else:
126
+ image = self.preprocessor(image=image,)['image']
127
+
128
+ image = (image / 127.5 - 1.0).astype(np.float32)
129
+ if segmentation_path:
130
+ if self.onehot:
131
+ assert segmentation.dtype == np.uint8
132
+ # make it one hot
133
+ n_labels = 183
134
+ flatseg = np.ravel(segmentation)
135
+ onehot = np.zeros((flatseg.size, n_labels), dtype=np.bool)
136
+ onehot[np.arange(flatseg.size), flatseg] = True
137
+ onehot = onehot.reshape(segmentation.shape + (n_labels,)).astype(int)
138
+ segmentation = onehot
139
+ else:
140
+ segmentation = (segmentation / 127.5 - 1.0).astype(np.float32)
141
+ return image, segmentation
142
+ else:
143
+ return image
144
+
145
+ def __getitem__(self, i):
146
+ img_path = self.img_id_to_filepath[self.labels["image_ids"][i]]
147
+ if self.use_segmenation:
148
+ seg_path = self.img_id_to_segmentation_filepath[self.labels["image_ids"][i]]
149
+ image, segmentation = self.preprocess_image(img_path, seg_path)
150
+ else:
151
+ image = self.preprocess_image(img_path)
152
+ captions = self.img_id_to_captions[self.labels["image_ids"][i]]
153
+ # randomly draw one of all available captions per image
154
+ caption = captions[np.random.randint(0, len(captions))]
155
+ example = {"image": image,
156
+ #"caption": [str(caption[0])],
157
+ "caption": caption,
158
+ "img_path": img_path,
159
+ "filename_": img_path.split(os.sep)[-1]
160
+ }
161
+ if self.use_segmenation:
162
+ example.update({"seg_path": seg_path, 'segmentation': segmentation})
163
+ return example
164
+
165
+
166
+ class CocoImagesAndCaptionsTrain2017(CocoBase):
167
+ """returns a pair of (image, caption)"""
168
+ def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,):
169
+ super().__init__(size=size,
170
+ dataroot="data/coco/train2017",
171
+ datajson="data/coco/annotations/captions_train2017.json",
172
+ onehot_segmentation=onehot_segmentation,
173
+ use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop)
174
+
175
+ def get_split(self):
176
+ return "train"
177
+
178
+ def year(self):
179
+ return '2017'
180
+
181
+
182
+ class CocoImagesAndCaptionsValidation2017(CocoBase):
183
+ """returns a pair of (image, caption)"""
184
+ def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,
185
+ given_files=None):
186
+ super().__init__(size=size,
187
+ dataroot="data/coco/val2017",
188
+ datajson="data/coco/annotations/captions_val2017.json",
189
+ onehot_segmentation=onehot_segmentation,
190
+ use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop,
191
+ given_files=given_files)
192
+
193
+ def get_split(self):
194
+ return "validation"
195
+
196
+ def year(self):
197
+ return '2017'
198
+
199
+
200
+
201
+ class CocoImagesAndCaptionsTrain2014(CocoBase):
202
+ """returns a pair of (image, caption)"""
203
+ def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,crop_type='random'):
204
+ super().__init__(size=size,
205
+ dataroot="data/coco/train2014",
206
+ datajson="data/coco/annotations2014/annotations/captions_train2014.json",
207
+ onehot_segmentation=onehot_segmentation,
208
+ use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop,
209
+ use_segmentation=False,
210
+ crop_type=crop_type)
211
+
212
+ def get_split(self):
213
+ return "train"
214
+
215
+ def year(self):
216
+ return '2014'
217
+
218
+ class CocoImagesAndCaptionsValidation2014(CocoBase):
219
+ """returns a pair of (image, caption)"""
220
+ def __init__(self, size, onehot_segmentation=False, use_stuffthing=False, crop_size=None, force_no_crop=False,
221
+ given_files=None,crop_type='center',**kwargs):
222
+ super().__init__(size=size,
223
+ dataroot="data/coco/val2014",
224
+ datajson="data/coco/annotations2014/annotations/captions_val2014.json",
225
+ onehot_segmentation=onehot_segmentation,
226
+ use_stuffthing=use_stuffthing, crop_size=crop_size, force_no_crop=force_no_crop,
227
+ given_files=given_files,
228
+ use_segmentation=False,
229
+ crop_type=crop_type)
230
+
231
+ def get_split(self):
232
+ return "validation"
233
+
234
+ def year(self):
235
+ return '2014'
236
+
237
+ if __name__ == '__main__':
238
+ with open("data/coco/annotations2014/annotations/captions_val2014.json", "r") as json_file:
239
+ json_data = json.load(json_file)
240
+ capdirs = json_data["annotations"]
241
+ import pudb; pudb.set_trace()
242
+ #d2 = CocoImagesAndCaptionsTrain2014(size=256)
243
+ d2 = CocoImagesAndCaptionsValidation2014(size=256)
244
+ print("constructed dataset.")
245
+ print(f"length of {d2.__class__.__name__}: {len(d2)}")
246
+
247
+ ex2 = d2[0]
248
+ # ex3 = d3[0]
249
+ # print(ex1["image"].shape)
250
+ print(ex2["image"].shape)
251
+ # print(ex3["image"].shape)
252
+ # print(ex1["segmentation"].shape)
253
+ print(ex2["caption"].__class__.__name__)
models/ldm/data/decoder.py ADDED
@@ -0,0 +1,497 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ sys.path.insert(1, '.')
3
+ import numpy as np
4
+ from omegaconf import DictConfig
5
+ import torch
6
+ from PIL import Image
7
+ import torchvision
8
+ import cv2
9
+ import matplotlib.pyplot as plt
10
+ from ldm.util import instantiate_from_config
11
+ import os
12
+ import io
13
+ import pickle
14
+ import webdataset as wds
15
+ import imageio
16
+ import time
17
+ from torch import distributed as dist
18
+ from itertools import chain
19
+
20
+
21
+ class ObjaverseDataDecoder:
22
+ def __init__(self,
23
+ target_name="albedo",
24
+ image_transforms=[],
25
+ default_trans=torch.zeros(3),
26
+ postprocess=None,
27
+ return_paths=False,
28
+ mask_name="alpha",
29
+ test=False,
30
+ condition_name=None,
31
+ bg_color="white",
32
+ target_name_pool=None,
33
+ **kargs
34
+ ) -> None:
35
+ """Create a dataset from blender rendering results.
36
+ If you pass in a root directory it will be searched for images
37
+ ending in ext (ext can be a list)
38
+ """
39
+ # testing behaves differently
40
+ self.test = test
41
+ self.target_name = target_name
42
+ self.mask_name = mask_name
43
+ self.default_trans = default_trans
44
+ self.return_paths = return_paths
45
+ if isinstance(postprocess, DictConfig):
46
+ postprocess = instantiate_from_config(postprocess)
47
+ self.postprocess = postprocess
48
+ # extra condition
49
+ self.condition_name = condition_name
50
+ self.target_name_pool = target_name_pool if not target_name_pool is None else [target_name]
51
+ self.counter = 0
52
+
53
+ self.tform = image_transforms["totensor"]
54
+ self.img_size = image_transforms["size"]
55
+ self.tsize = torchvision.transforms.Compose([torchvision.transforms.Resize(self.img_size)])
56
+ if bg_color == "white":
57
+ self.bg_color = [1., 1., 1., 1.]
58
+ elif bg_color == "noise":
59
+ self.bg_color = "noise"
60
+ else:
61
+ raise NotImplementedError
62
+
63
+ def path_parsing(self, filename, cond_name=None):
64
+ # cached path loads albedo
65
+ if 'albedo' in filename:
66
+ filename = filename.replace('albedo', self.target_name)
67
+ if self.target_name=="gloss_shaded":
68
+ filename = filename.replace('gloss_direct', self.target_name).replace("exr", "jpg")
69
+ filename_targets = [filename.replace(self.target_name, "gloss_direct").replace("jpg", "exr"),
70
+ filename.replace(self.target_name, "gloss_color")]
71
+ elif self.target_name=="diffuse_shaded":
72
+ filename = filename.replace('diffuse_direct', self.target_name).replace("exr", "jpg")
73
+ filename_targets = [filename.replace(self.target_name, "diffuse_direct").replace("jpg", "exr"),
74
+ filename.replace(self.target_name, "albedo")]
75
+ else:
76
+ filename_targets = None
77
+
78
+ normal_condition_filename = None
79
+ if self.test and "images_train" in filename:
80
+ # Currently. "images_train" exists in test set, we write this for clearity
81
+ condition_filename = filename
82
+ mask_filename = filename.replace('images_train', 'masks')
83
+ if self.condition_name == "normal":
84
+ raise NotImplementedError("Testing with normal conditioning on custom data is not supported")
85
+ else:
86
+ cond_name_prefix = filename.split(".", 1)[0] + "." if cond_name is None else cond_name
87
+ condition_filename = cond_name_prefix + filename.rsplit('.', 1)[1]
88
+ mask_filename = filename.replace(self.target_name, self.mask_name)
89
+ if self.condition_name == "normal":
90
+ normal_condition_filename = filename.replace(self.target_name, "normal")
91
+
92
+ return filename, condition_filename, mask_filename, normal_condition_filename, filename_targets
93
+
94
+ def read_images(self, filename, condition_filename, normal_condition_filename):
95
+ # image reading
96
+ if self.target_name in ["gloss_shaded", "diffuse_shaded"]:
97
+ target_im_0 = np.array(self.normalized_read(filename[0]))
98
+ target_im_1 = np.array(self.normalized_read(filename[1]))
99
+ target_im = np.clip(target_im_0 * target_im_1, 0, 1)
100
+ else:
101
+ target_im = np.array(self.normalized_read(filename))
102
+
103
+ cond_im = np.array(self.normalized_read(condition_filename))
104
+
105
+ if self.condition_name == "normal":
106
+ normal_img = np.array(self.normalized_read(normal_condition_filename))
107
+ else:
108
+ normal_img = None
109
+
110
+ return target_im, cond_im, normal_img
111
+
112
+
113
+ def image_post_processing(self, img_mask, target_im, cond_im, normal_img):
114
+ # make sure image has 3 dimension
115
+ if len(img_mask.shape) == 2:
116
+ img_mask = img_mask[:, :, np.newaxis]
117
+ else:
118
+ img_mask = img_mask[:, :, :3]
119
+
120
+ # transform into desired format
121
+ target_im, crop_idx = self.load_im(target_im, img_mask, self.bg_color, crop_idx=True)
122
+ target_im = np.uint8(self.tsize(target_im))
123
+ cond_im = np.uint8(self.tsize(self.load_im(cond_im, img_mask, self.bg_color)))
124
+
125
+ if self.condition_name == "normal":
126
+ normal_img = np.uint8(self.tsize(self.load_im(normal_img, img_mask, self.bg_color)))
127
+ else:
128
+ normal_img = None
129
+ return target_im, cond_im, normal_img, crop_idx
130
+
131
+ # def cartesian_to_spherical(self, xyz):
132
+ # ptsnew = np.hstack((xyz, np.zeros(xyz.shape)))
133
+ # xy = xyz[:,0]**2 + xyz[:,1]**2
134
+ # z = np.sqrt(xy + xyz[:,2]**2)
135
+ # theta = np.arctan2(np.sqrt(xy), xyz[:,2]) # for elevation angle defined from Z-axis down
136
+ # #ptsnew[:,4] = np.arctan2(xyz[:,2], np.sqrt(xy)) # for elevation angle defined from XY-plane up
137
+ # azimuth = np.arctan2(xyz[:,1], xyz[:,0])
138
+ # return np.array([theta, azimuth, z])
139
+
140
+
141
+ def load_im(self, img, img_mask, color, crop_idx=False):
142
+ '''
143
+ replace background pixel with random color in rendering
144
+ '''
145
+ # our rendering do not have a valid alpha channel.
146
+ # We use a seperate mask, which also do not have a valid alpha
147
+ if img.shape[-1] == 3:
148
+ img = np.concatenate([img, np.ones_like(img[..., :1])], axis=-1)
149
+
150
+ # image maske shape align with image size
151
+ if (img.shape[0] != img_mask.shape[0]) or (img.shape[1] != img_mask.shape[1]):
152
+ img_mask = cv2.resize(img_mask,
153
+ (img.shape[1], img.shape[0]),
154
+ interpolation=cv2.INTER_NEAREST)[:, :, np.newaxis]
155
+
156
+ if isinstance(color, str):
157
+ random_img = np.random.rand(*(img.shape))
158
+ img[img_mask[:, :, -1] <= 0.5] = random_img[img_mask[:, :, -1] <= 0.5]
159
+ else:
160
+ img[img_mask[:, :, -1] <= 0.5] = color
161
+
162
+ if self.test:
163
+ # crop out valid_mask
164
+ img, crop_uv = self.center_crop(img[:, :, :3], img_mask)
165
+ else:
166
+ crop_uv = None
167
+
168
+ # center crop
169
+ if img.shape[0] > img.shape[1]:
170
+ margin = int((img.shape[0] - img.shape[1]) // 2)
171
+ img = img[margin:margin+img.shape[1]]
172
+ elif img.shape[1] > img.shape[0]:
173
+ margin = int((img.shape[1] - img.shape[0]) // 2)
174
+ img = img[:, margin:margin+img.shape[0]]
175
+
176
+ img = Image.fromarray(np.uint8(img[:, :, :3] * 255.))
177
+ if crop_idx:
178
+ return img, crop_uv
179
+ return img
180
+
181
+ def center_crop(self, img, mask, mask_ratio=.8):
182
+ mask_uvs = np.vstack(np.nonzero(mask[:, :, -1] > 0.5))
183
+ min_uv, max_uv = np.min(mask_uvs, axis=-1), np.max(mask_uvs, axis=-1)
184
+ img = img + (mask[..., -1:] <= 0.5)
185
+
186
+ half_size = int(max(max_uv - min_uv) // 2)
187
+ crop_length = (max_uv - min_uv) // 2
188
+ center_uv = min_uv + crop_length
189
+ expand_hasl_size = int(half_size / mask_ratio)
190
+ size = expand_hasl_size * 2 + 1
191
+
192
+ img_new = np.ones((size, size, 3))
193
+ img_new[expand_hasl_size-crop_length[0]:expand_hasl_size+crop_length[0]+1, expand_hasl_size-crop_length[1]:expand_hasl_size+crop_length[1]+1] = \
194
+ img[center_uv[0]-crop_length[0]:center_uv[0]+crop_length[0]+1, center_uv[1]-crop_length[1]:center_uv[1]+crop_length[1]+1]
195
+ crop_uv = np.array([expand_hasl_size, crop_length[0], crop_length[1], center_uv[0], center_uv[1], size], dtype=int)
196
+ return img_new, crop_uv
197
+
198
+ def transform_normal(self, normal_input, cam):
199
+ # load camera
200
+ img_mask = torch.linalg.norm(normal_input, dim=-1) > 1.5
201
+ extrinsic, K = cam
202
+ extrinsic = np.concatenate([extrinsic, np.zeros(4).reshape(1, 4)], axis=0)
203
+ extrinsic[3, 3] = 1
204
+ pose = np.linalg.inv(extrinsic)
205
+ temp = pose[1] + 0.0
206
+ pose[1] = -pose[2]
207
+ pose[2] = temp
208
+ extrinsic = torch.from_numpy(np.linalg.inv(pose)).float()
209
+
210
+ # to normal
211
+ normal_img = extrinsic[None, :3, :3] @ normal_input[..., :3].reshape(-1, 3, 1)
212
+ normal_img = normal_img.reshape(normal_input.shape[0], normal_input.shape[1], 3)
213
+
214
+ normal_img[img_mask] = 1.0
215
+ return normal_img
216
+
217
+ def parse_item(self, target_im, cond_img, normal_img, filename, target_ids, **args):
218
+ data = {}
219
+
220
+ # we need to transform normal to cmaera frame
221
+ if self.target_name == "normal":
222
+ target_im = self.transform_normal(target_im, self.get_camera(filename, **args))
223
+
224
+ # normal conditioning
225
+ if self.condition_name == "normal":
226
+ normal_img = self.transform_normal(normal_img, self.get_camera(filename, **args))
227
+
228
+ data["image_target"] = target_im
229
+ data["image_cond"] = cond_img
230
+ if self.condition_name == "normal":
231
+ data["img_normal"] = normal_img
232
+
233
+ if self.test or self.return_paths:
234
+ data["path"] = str(filename)
235
+
236
+ data["label"] = torch.zeros(1).reshape(1, 1, 1)+target_ids
237
+
238
+ if self.postprocess is not None:
239
+ data = self.postprocess(data)
240
+ return data
241
+
242
+ def normalized_read(self, imgpath):
243
+ img = np.array(imageio.imread(imgpath))
244
+ if img.dtype == np.uint8:
245
+ img = img / 255.0
246
+ else:
247
+ img = img ** (1 / 2.2)
248
+ return img
249
+
250
+ def process_im(self, im):
251
+ im = Image.fromarray(im)
252
+ im = im.convert("RGB")
253
+ return self.tform(im)
254
+
255
+
256
+ class ObjaverseDecoerWDS(ObjaverseDataDecoder):
257
+ def __init__(self, **kargs) -> None:
258
+ super().__init__(**kargs)
259
+
260
+ def dict2tuple(self, data):
261
+ returns = (data["image_target"], data["image_cond"],data["label"],)
262
+ if self.condition_name == "normal":
263
+ returns +=(data["img_normal"], )
264
+ if self.test or self.return_paths:
265
+ returns += (data["path"],)
266
+ return returns
267
+
268
+ def tuple2dict(self, data):
269
+ returns = {}
270
+ returns["image_target"] = data[0]
271
+ returns["image_cond"] = data[1]
272
+ returns["label"] = data[2]
273
+
274
+ if self.condition_name == "normal":
275
+ returns["img_normal"] = data[3]
276
+
277
+ if self.test or self.return_paths:
278
+ returns["path"] = data[-1]
279
+
280
+ return returns
281
+
282
+ def data_filter(self, albedo, spec, diffuse_shad, spec_shad):
283
+ returns = {}
284
+ returns["image_target"] = data[0]
285
+ returns["image_cond"] = data[1]
286
+ if self.condition_name == "normal":
287
+ returns["img_normal"] = data[2]
288
+
289
+ if self.test or self.return_paths:
290
+ returns["path"] = data[-1]
291
+
292
+ return returns
293
+
294
+ def get_camera(self, input_filename, sample):
295
+ camera_file = input_filename.replace(f'{self.target_name}0001', \
296
+ 'camera').rsplit(".")[0] + ".pkl"
297
+ mask_filename_byte = io.BytesIO(sample[camera_file])
298
+ cam = pickle.load(mask_filename_byte)
299
+ return cam
300
+
301
+ def process_sample(self, sample):
302
+ # start_worker=time.time()
303
+ results = []
304
+ for target_ids, target_name in enumerate(self.target_name_pool):
305
+ _result = self.process_sample_single(sample, target_ids, target_name)
306
+ results.append(self.dict2tuple(_result))
307
+ results = wds.filters.default_collation_fn(results)
308
+ return results
309
+
310
+ def batch_reordering(self, sample):
311
+ batch_splits = []
312
+ for data_idx, _ in enumerate(sample):
313
+ batch_splits.append(
314
+ torch.cat(
315
+ torch.chunk(sample[data_idx], dim=1,
316
+ chunks=len(self.target_name_pool)),
317
+ dim=0)[:,0]
318
+ )
319
+ return self.tuple2dict(batch_splits)
320
+
321
+ def process_sample_single(self, sample, target_ids, target_name):
322
+
323
+ # get target image filename
324
+ self.target_name = target_name
325
+ target_file_name = self.target_name
326
+ if self.target_name=="gloss_shaded":
327
+ target_file_name = "gloss_direct"
328
+ elif self.target_name=="diffuse_shaded":
329
+ target_file_name = "diffuse_direct"
330
+
331
+ for k in list(sample.keys()):
332
+ if target_file_name not in k:
333
+ continue
334
+ target_key = k
335
+ break
336
+
337
+ # ##############
338
+ # prev_time = start_worker
339
+ # current_time = time.time()
340
+ # print(f"find target takes: {current_time - prev_time}")
341
+ # ##############
342
+
343
+ filename, condition_filename, \
344
+ mask_filename, normal_condition_filename, filename_targets = self.path_parsing(target_key, "")
345
+
346
+ # get file streams
347
+ if filename_targets is None:
348
+ filename_byte = io.BytesIO(sample[filename])
349
+ else:
350
+ filename_byte = [io.BytesIO(sample[filename_target]) for filename_target in filename_targets]
351
+ condition_filename_byte = io.BytesIO(sample[condition_filename])
352
+ normal_condition_filename_byte = io.BytesIO(sample[normal_condition_filename]) \
353
+ if self.condition_name == "normal" else None
354
+ mask_filename_byte = io.BytesIO(sample[mask_filename])
355
+
356
+ # image reading
357
+ target_im, cond_im, normal_img = self.read_images(filename_byte,
358
+ condition_filename_byte, normal_condition_filename_byte)
359
+
360
+ # mask reading
361
+ img_mask = np.array(self.normalized_read(mask_filename_byte))
362
+
363
+ # post processing
364
+ target_im, cond_im, normal_img, _ = self.image_post_processing(img_mask, target_im, cond_im, normal_img)
365
+
366
+ # transform
367
+ target_im = self.process_im(target_im)
368
+ cond_im = self.process_im(cond_im)
369
+ normal_img = self.process_im(normal_img) \
370
+ if self.condition_name == "normal" \
371
+ else None
372
+
373
+ data = self.parse_item(target_im, cond_im, normal_img, filename, target_ids, sample=sample)
374
+ # override for file path
375
+ if self.test or self.return_paths:
376
+ data["path"] = sample["__key__"]
377
+
378
+ result = dict(__key__=sample["__key__"])
379
+ result.update(data)
380
+ return result
381
+
382
+
383
+ if __name__=="__main__":
384
+ from torchvision import transforms
385
+ from einops import rearrange
386
+ torch.distributed.init_process_group(backend="nccl")
387
+ image_transforms = [transforms.ToTensor(),
388
+ transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))]
389
+ image_transforms = torchvision.transforms.Compose(image_transforms)
390
+ image_transforms = {
391
+ "size": 256,
392
+ "totensor": image_transforms
393
+ }
394
+
395
+ data_list_dir = "/home/chenxi/code/material-diffusion/data/big_data_lists"
396
+ tar_name_list = sorted(os.listdir(data_list_dir))[1:4]
397
+ tar_list = [_name.rsplit("_num")[0]+".tar" for _name in tar_name_list]
398
+ tar_dir = "/home/chenxi/code/material-diffusion/data/big_data_transed"
399
+ tars = [os.path.join(tar_dir, _name) for _name in tar_list]
400
+ dataset_size = 0
401
+ imgperobj = 10
402
+ print("list dirs...")
403
+ for _name in tar_name_list:
404
+ num_obj = int(_name.rsplit("_num_")[1].rsplit(".")[0])
405
+ print(num_obj, " : ", _name)
406
+ dataset_size += num_obj * imgperobj
407
+
408
+ decoder = ObjaverseDecoerWDS(image_transforms=image_transforms,
409
+ return_paths=True)
410
+ batch_size = 8
411
+
412
+ print('============= length of training dataset %d =============' % (dataset_size // batch_size // 2))
413
+ dataset = (wds.WebDataset(tars,
414
+ repeat=0,
415
+ nodesplitter=wds.shardlists.split_by_node)
416
+ .shuffle(100)
417
+ .map(decoder.process_sample)
418
+ .map(decoder.dict2tuple)
419
+ .batched(batch_size, partial=False)
420
+ .map(decoder.tuple2dict)
421
+ .with_epoch(dataset_size // batch_size // 2)
422
+ .with_length(dataset_size // batch_size)
423
+ )
424
+ from torch.utils.data import DataLoader
425
+ # loader = DataLoader(dataset, batch_size=None, num_workers=8, shuffle=False)
426
+ loader = (wds.WebLoader(dataset, batch_size=None, num_workers=2, shuffle=False)
427
+ .map(decoder.dict2tuple)
428
+ .unbatched()
429
+ # .shuffle(100)
430
+ .batched(batch_size)
431
+ .map(decoder.tuple2dict)
432
+ )
433
+
434
+
435
+ print("# loader length", len(dataset))
436
+
437
+ for epoch in range(2):
438
+ ind = -1
439
+ for sample in loader:
440
+ assert "image_target" in sample
441
+ assert "image_cond" in sample
442
+ assert "path" in sample
443
+ ind += 1
444
+ if ind != 0:
445
+ continue
446
+
447
+ # replace to this for file path
448
+ # worker_info = torch.utils.data.get_worker_info()
449
+ # if worker_info is not None:
450
+ # worker = worker_info.id
451
+ # num_workers = worker_info.num_workers
452
+ # data["path"] = sample["__url__"]+"--"+sample["__key__"] +f".{worker}/{num_workers}"
453
+
454
+ # print(f"{ind}: shape {sample['image_target'].shape} {sample['path'][0].rsplit('/', 1)[-2]}")
455
+ print("##############")
456
+ for i in range(len(sample['path'])):
457
+ print(f"epoch {epoch}, it {ind}: shape {sample['image_target'].shape} {sample['path'][i].rsplit('--', 1)[0].rsplit('/', 2)[-1]} {sample['path'][i].rsplit('--', 1)[1].rsplit('/', 3)[-3]} {sample['path'][i].rsplit('--', 1)[1].rsplit('/',4)[-4]} {sample['path'][i].rsplit('.', 1)[-1]} rank: {dist.get_rank()}")
458
+ print("##############")
459
+
460
+
461
+ print(sample["path"])
462
+
463
+ print(sample["path"])
464
+
465
+ print(f"NUmber of samples: {ind} {dataset_size} {len(dataset)} rank: {dist.get_rank()}")
466
+ # 1. Remember samples are batched inside each worker, the outside data loader only sees one sample
467
+ # 2. All batch, epoch, and length settings are only visible within each worker
468
+ # 3. Unbatch and Suffle and then re-batch in loader result in between worker shuffle.
469
+ # This also allows to control of loader batching and worker batching for CPU optimization of worker-loader data transfer.
470
+ # https://github.com/webdataset/webdataset/issues/141#issuecomment-1043190147
471
+ # 4. It seems that data just repeat forever to satisfy with_epoch
472
+ # 5. Torch datalogger requires the dataset to have a len() method, which is used to schdule sample idx
473
+ # 6. DDP sampler will return its only length
474
+ # 7. WebLoader does not need length, it only raises the end of the iteration when data is running out
475
+ # 8. How does torch loader deal with datasets with fewer sizes than claims?
476
+ # 9. Set epoch will make sampling start from the beginning when a new epoch starts. Observed by disable shuffle and one batch repeat
477
+ # And each epoch will have a different sampling seed
478
+ # 10. DataLoader with IterableDataset: expected unspecified sampler option. DDP sampler will not be usable.
479
+ # !0. In summary:
480
+ # For ddp multi-worker training, the worker splitter and node splitter will make sure tars are splitted into each worker
481
+ # We have to manually adjust with_epoch with respect to num_worker and num_node and batch_size
482
+
483
+ def nodesplitter(src, group=None):
484
+ if torch.distributed.is_initialized():
485
+ if group is None:
486
+ group = torch.distributed.group.WORLD
487
+ rank = torch.distributed.get_rank(group=group)
488
+ size = torch.distributed.get_world_size(group=group)
489
+ print(f"nodesplitter: rank={rank} size={size}")
490
+ count = 0
491
+ for i, item in enumerate(src):
492
+ if i % size == rank:
493
+ yield item
494
+ count += 1
495
+ print(f"nodesplitter: rank={rank} size={size} count={count} DONE")
496
+ else:
497
+ yield from src
models/ldm/data/dummy.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import random
3
+ import string
4
+ from torch.utils.data import Dataset, Subset
5
+
6
+ class DummyData(Dataset):
7
+ def __init__(self, length, size):
8
+ self.length = length
9
+ self.size = size
10
+
11
+ def __len__(self):
12
+ return self.length
13
+
14
+ def __getitem__(self, i):
15
+ x = np.random.randn(*self.size)
16
+ letters = string.ascii_lowercase
17
+ y = ''.join(random.choice(string.ascii_lowercase) for i in range(10))
18
+ return {"jpg": x, "txt": y}
19
+
20
+
21
+ class DummyDataWithEmbeddings(Dataset):
22
+ def __init__(self, length, size, emb_size):
23
+ self.length = length
24
+ self.size = size
25
+ self.emb_size = emb_size
26
+
27
+ def __len__(self):
28
+ return self.length
29
+
30
+ def __getitem__(self, i):
31
+ x = np.random.randn(*self.size)
32
+ y = np.random.randn(*self.emb_size).astype(np.float32)
33
+ return {"jpg": x, "txt": y}
34
+
models/ldm/data/imagenet.py ADDED
@@ -0,0 +1,394 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os, yaml, pickle, shutil, tarfile, glob
2
+ import cv2
3
+ import albumentations
4
+ import PIL
5
+ import numpy as np
6
+ import torchvision.transforms.functional as TF
7
+ from omegaconf import OmegaConf
8
+ from functools import partial
9
+ from PIL import Image
10
+ from tqdm import tqdm
11
+ from torch.utils.data import Dataset, Subset
12
+
13
+ import taming.data.utils as tdu
14
+ from taming.data.imagenet import str_to_indices, give_synsets_from_indices, download, retrieve
15
+ from taming.data.imagenet import ImagePaths
16
+
17
+ from ldm.modules.image_degradation import degradation_fn_bsr, degradation_fn_bsr_light
18
+
19
+
20
+ def synset2idx(path_to_yaml="data/index_synset.yaml"):
21
+ with open(path_to_yaml) as f:
22
+ di2s = yaml.load(f)
23
+ return dict((v,k) for k,v in di2s.items())
24
+
25
+
26
+ class ImageNetBase(Dataset):
27
+ def __init__(self, config=None):
28
+ self.config = config or OmegaConf.create()
29
+ if not type(self.config)==dict:
30
+ self.config = OmegaConf.to_container(self.config)
31
+ self.keep_orig_class_label = self.config.get("keep_orig_class_label", False)
32
+ self.process_images = True # if False we skip loading & processing images and self.data contains filepaths
33
+ self._prepare()
34
+ self._prepare_synset_to_human()
35
+ self._prepare_idx_to_synset()
36
+ self._prepare_human_to_integer_label()
37
+ self._load()
38
+
39
+ def __len__(self):
40
+ return len(self.data)
41
+
42
+ def __getitem__(self, i):
43
+ return self.data[i]
44
+
45
+ def _prepare(self):
46
+ raise NotImplementedError()
47
+
48
+ def _filter_relpaths(self, relpaths):
49
+ ignore = set([
50
+ "n06596364_9591.JPEG",
51
+ ])
52
+ relpaths = [rpath for rpath in relpaths if not rpath.split("/")[-1] in ignore]
53
+ if "sub_indices" in self.config:
54
+ indices = str_to_indices(self.config["sub_indices"])
55
+ synsets = give_synsets_from_indices(indices, path_to_yaml=self.idx2syn) # returns a list of strings
56
+ self.synset2idx = synset2idx(path_to_yaml=self.idx2syn)
57
+ files = []
58
+ for rpath in relpaths:
59
+ syn = rpath.split("/")[0]
60
+ if syn in synsets:
61
+ files.append(rpath)
62
+ return files
63
+ else:
64
+ return relpaths
65
+
66
+ def _prepare_synset_to_human(self):
67
+ SIZE = 2655750
68
+ URL = "https://heibox.uni-heidelberg.de/f/9f28e956cd304264bb82/?dl=1"
69
+ self.human_dict = os.path.join(self.root, "synset_human.txt")
70
+ if (not os.path.exists(self.human_dict) or
71
+ not os.path.getsize(self.human_dict)==SIZE):
72
+ download(URL, self.human_dict)
73
+
74
+ def _prepare_idx_to_synset(self):
75
+ URL = "https://heibox.uni-heidelberg.de/f/d835d5b6ceda4d3aa910/?dl=1"
76
+ self.idx2syn = os.path.join(self.root, "index_synset.yaml")
77
+ if (not os.path.exists(self.idx2syn)):
78
+ download(URL, self.idx2syn)
79
+
80
+ def _prepare_human_to_integer_label(self):
81
+ URL = "https://heibox.uni-heidelberg.de/f/2362b797d5be43b883f6/?dl=1"
82
+ self.human2integer = os.path.join(self.root, "imagenet1000_clsidx_to_labels.txt")
83
+ if (not os.path.exists(self.human2integer)):
84
+ download(URL, self.human2integer)
85
+ with open(self.human2integer, "r") as f:
86
+ lines = f.read().splitlines()
87
+ assert len(lines) == 1000
88
+ self.human2integer_dict = dict()
89
+ for line in lines:
90
+ value, key = line.split(":")
91
+ self.human2integer_dict[key] = int(value)
92
+
93
+ def _load(self):
94
+ with open(self.txt_filelist, "r") as f:
95
+ self.relpaths = f.read().splitlines()
96
+ l1 = len(self.relpaths)
97
+ self.relpaths = self._filter_relpaths(self.relpaths)
98
+ print("Removed {} files from filelist during filtering.".format(l1 - len(self.relpaths)))
99
+
100
+ self.synsets = [p.split("/")[0] for p in self.relpaths]
101
+ self.abspaths = [os.path.join(self.datadir, p) for p in self.relpaths]
102
+
103
+ unique_synsets = np.unique(self.synsets)
104
+ class_dict = dict((synset, i) for i, synset in enumerate(unique_synsets))
105
+ if not self.keep_orig_class_label:
106
+ self.class_labels = [class_dict[s] for s in self.synsets]
107
+ else:
108
+ self.class_labels = [self.synset2idx[s] for s in self.synsets]
109
+
110
+ with open(self.human_dict, "r") as f:
111
+ human_dict = f.read().splitlines()
112
+ human_dict = dict(line.split(maxsplit=1) for line in human_dict)
113
+
114
+ self.human_labels = [human_dict[s] for s in self.synsets]
115
+
116
+ labels = {
117
+ "relpath": np.array(self.relpaths),
118
+ "synsets": np.array(self.synsets),
119
+ "class_label": np.array(self.class_labels),
120
+ "human_label": np.array(self.human_labels),
121
+ }
122
+
123
+ if self.process_images:
124
+ self.size = retrieve(self.config, "size", default=256)
125
+ self.data = ImagePaths(self.abspaths,
126
+ labels=labels,
127
+ size=self.size,
128
+ random_crop=self.random_crop,
129
+ )
130
+ else:
131
+ self.data = self.abspaths
132
+
133
+
134
+ class ImageNetTrain(ImageNetBase):
135
+ NAME = "ILSVRC2012_train"
136
+ URL = "http://www.image-net.org/challenges/LSVRC/2012/"
137
+ AT_HASH = "a306397ccf9c2ead27155983c254227c0fd938e2"
138
+ FILES = [
139
+ "ILSVRC2012_img_train.tar",
140
+ ]
141
+ SIZES = [
142
+ 147897477120,
143
+ ]
144
+
145
+ def __init__(self, process_images=True, data_root=None, **kwargs):
146
+ self.process_images = process_images
147
+ self.data_root = data_root
148
+ super().__init__(**kwargs)
149
+
150
+ def _prepare(self):
151
+ if self.data_root:
152
+ self.root = os.path.join(self.data_root, self.NAME)
153
+ else:
154
+ cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
155
+ self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
156
+
157
+ self.datadir = os.path.join(self.root, "data")
158
+ self.txt_filelist = os.path.join(self.root, "filelist.txt")
159
+ self.expected_length = 1281167
160
+ self.random_crop = retrieve(self.config, "ImageNetTrain/random_crop",
161
+ default=True)
162
+ if not tdu.is_prepared(self.root):
163
+ # prep
164
+ print("Preparing dataset {} in {}".format(self.NAME, self.root))
165
+
166
+ datadir = self.datadir
167
+ if not os.path.exists(datadir):
168
+ path = os.path.join(self.root, self.FILES[0])
169
+ if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
170
+ import academictorrents as at
171
+ atpath = at.get(self.AT_HASH, datastore=self.root)
172
+ assert atpath == path
173
+
174
+ print("Extracting {} to {}".format(path, datadir))
175
+ os.makedirs(datadir, exist_ok=True)
176
+ with tarfile.open(path, "r:") as tar:
177
+ tar.extractall(path=datadir)
178
+
179
+ print("Extracting sub-tars.")
180
+ subpaths = sorted(glob.glob(os.path.join(datadir, "*.tar")))
181
+ for subpath in tqdm(subpaths):
182
+ subdir = subpath[:-len(".tar")]
183
+ os.makedirs(subdir, exist_ok=True)
184
+ with tarfile.open(subpath, "r:") as tar:
185
+ tar.extractall(path=subdir)
186
+
187
+ filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
188
+ filelist = [os.path.relpath(p, start=datadir) for p in filelist]
189
+ filelist = sorted(filelist)
190
+ filelist = "\n".join(filelist)+"\n"
191
+ with open(self.txt_filelist, "w") as f:
192
+ f.write(filelist)
193
+
194
+ tdu.mark_prepared(self.root)
195
+
196
+
197
+ class ImageNetValidation(ImageNetBase):
198
+ NAME = "ILSVRC2012_validation"
199
+ URL = "http://www.image-net.org/challenges/LSVRC/2012/"
200
+ AT_HASH = "5d6d0df7ed81efd49ca99ea4737e0ae5e3a5f2e5"
201
+ VS_URL = "https://heibox.uni-heidelberg.de/f/3e0f6e9c624e45f2bd73/?dl=1"
202
+ FILES = [
203
+ "ILSVRC2012_img_val.tar",
204
+ "validation_synset.txt",
205
+ ]
206
+ SIZES = [
207
+ 6744924160,
208
+ 1950000,
209
+ ]
210
+
211
+ def __init__(self, process_images=True, data_root=None, **kwargs):
212
+ self.data_root = data_root
213
+ self.process_images = process_images
214
+ super().__init__(**kwargs)
215
+
216
+ def _prepare(self):
217
+ if self.data_root:
218
+ self.root = os.path.join(self.data_root, self.NAME)
219
+ else:
220
+ cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
221
+ self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
222
+ self.datadir = os.path.join(self.root, "data")
223
+ self.txt_filelist = os.path.join(self.root, "filelist.txt")
224
+ self.expected_length = 50000
225
+ self.random_crop = retrieve(self.config, "ImageNetValidation/random_crop",
226
+ default=False)
227
+ if not tdu.is_prepared(self.root):
228
+ # prep
229
+ print("Preparing dataset {} in {}".format(self.NAME, self.root))
230
+
231
+ datadir = self.datadir
232
+ if not os.path.exists(datadir):
233
+ path = os.path.join(self.root, self.FILES[0])
234
+ if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
235
+ import academictorrents as at
236
+ atpath = at.get(self.AT_HASH, datastore=self.root)
237
+ assert atpath == path
238
+
239
+ print("Extracting {} to {}".format(path, datadir))
240
+ os.makedirs(datadir, exist_ok=True)
241
+ with tarfile.open(path, "r:") as tar:
242
+ tar.extractall(path=datadir)
243
+
244
+ vspath = os.path.join(self.root, self.FILES[1])
245
+ if not os.path.exists(vspath) or not os.path.getsize(vspath)==self.SIZES[1]:
246
+ download(self.VS_URL, vspath)
247
+
248
+ with open(vspath, "r") as f:
249
+ synset_dict = f.read().splitlines()
250
+ synset_dict = dict(line.split() for line in synset_dict)
251
+
252
+ print("Reorganizing into synset folders")
253
+ synsets = np.unique(list(synset_dict.values()))
254
+ for s in synsets:
255
+ os.makedirs(os.path.join(datadir, s), exist_ok=True)
256
+ for k, v in synset_dict.items():
257
+ src = os.path.join(datadir, k)
258
+ dst = os.path.join(datadir, v)
259
+ shutil.move(src, dst)
260
+
261
+ filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
262
+ filelist = [os.path.relpath(p, start=datadir) for p in filelist]
263
+ filelist = sorted(filelist)
264
+ filelist = "\n".join(filelist)+"\n"
265
+ with open(self.txt_filelist, "w") as f:
266
+ f.write(filelist)
267
+
268
+ tdu.mark_prepared(self.root)
269
+
270
+
271
+
272
+ class ImageNetSR(Dataset):
273
+ def __init__(self, size=None,
274
+ degradation=None, downscale_f=4, min_crop_f=0.5, max_crop_f=1.,
275
+ random_crop=True):
276
+ """
277
+ Imagenet Superresolution Dataloader
278
+ Performs following ops in order:
279
+ 1. crops a crop of size s from image either as random or center crop
280
+ 2. resizes crop to size with cv2.area_interpolation
281
+ 3. degrades resized crop with degradation_fn
282
+
283
+ :param size: resizing to size after cropping
284
+ :param degradation: degradation_fn, e.g. cv_bicubic or bsrgan_light
285
+ :param downscale_f: Low Resolution Downsample factor
286
+ :param min_crop_f: determines crop size s,
287
+ where s = c * min_img_side_len with c sampled from interval (min_crop_f, max_crop_f)
288
+ :param max_crop_f: ""
289
+ :param data_root:
290
+ :param random_crop:
291
+ """
292
+ self.base = self.get_base()
293
+ assert size
294
+ assert (size / downscale_f).is_integer()
295
+ self.size = size
296
+ self.LR_size = int(size / downscale_f)
297
+ self.min_crop_f = min_crop_f
298
+ self.max_crop_f = max_crop_f
299
+ assert(max_crop_f <= 1.)
300
+ self.center_crop = not random_crop
301
+
302
+ self.image_rescaler = albumentations.SmallestMaxSize(max_size=size, interpolation=cv2.INTER_AREA)
303
+
304
+ self.pil_interpolation = False # gets reset later if incase interp_op is from pillow
305
+
306
+ if degradation == "bsrgan":
307
+ self.degradation_process = partial(degradation_fn_bsr, sf=downscale_f)
308
+
309
+ elif degradation == "bsrgan_light":
310
+ self.degradation_process = partial(degradation_fn_bsr_light, sf=downscale_f)
311
+
312
+ else:
313
+ interpolation_fn = {
314
+ "cv_nearest": cv2.INTER_NEAREST,
315
+ "cv_bilinear": cv2.INTER_LINEAR,
316
+ "cv_bicubic": cv2.INTER_CUBIC,
317
+ "cv_area": cv2.INTER_AREA,
318
+ "cv_lanczos": cv2.INTER_LANCZOS4,
319
+ "pil_nearest": PIL.Image.NEAREST,
320
+ "pil_bilinear": PIL.Image.BILINEAR,
321
+ "pil_bicubic": PIL.Image.BICUBIC,
322
+ "pil_box": PIL.Image.BOX,
323
+ "pil_hamming": PIL.Image.HAMMING,
324
+ "pil_lanczos": PIL.Image.LANCZOS,
325
+ }[degradation]
326
+
327
+ self.pil_interpolation = degradation.startswith("pil_")
328
+
329
+ if self.pil_interpolation:
330
+ self.degradation_process = partial(TF.resize, size=self.LR_size, interpolation=interpolation_fn)
331
+
332
+ else:
333
+ self.degradation_process = albumentations.SmallestMaxSize(max_size=self.LR_size,
334
+ interpolation=interpolation_fn)
335
+
336
+ def __len__(self):
337
+ return len(self.base)
338
+
339
+ def __getitem__(self, i):
340
+ example = self.base[i]
341
+ image = Image.open(example["file_path_"])
342
+
343
+ if not image.mode == "RGB":
344
+ image = image.convert("RGB")
345
+
346
+ image = np.array(image).astype(np.uint8)
347
+
348
+ min_side_len = min(image.shape[:2])
349
+ crop_side_len = min_side_len * np.random.uniform(self.min_crop_f, self.max_crop_f, size=None)
350
+ crop_side_len = int(crop_side_len)
351
+
352
+ if self.center_crop:
353
+ self.cropper = albumentations.CenterCrop(height=crop_side_len, width=crop_side_len)
354
+
355
+ else:
356
+ self.cropper = albumentations.RandomCrop(height=crop_side_len, width=crop_side_len)
357
+
358
+ image = self.cropper(image=image)["image"]
359
+ image = self.image_rescaler(image=image)["image"]
360
+
361
+ if self.pil_interpolation:
362
+ image_pil = PIL.Image.fromarray(image)
363
+ LR_image = self.degradation_process(image_pil)
364
+ LR_image = np.array(LR_image).astype(np.uint8)
365
+
366
+ else:
367
+ LR_image = self.degradation_process(image=image)["image"]
368
+
369
+ example["image"] = (image/127.5 - 1.0).astype(np.float32)
370
+ example["LR_image"] = (LR_image/127.5 - 1.0).astype(np.float32)
371
+ example["caption"] = example["human_label"] # dummy caption
372
+ return example
373
+
374
+
375
+ class ImageNetSRTrain(ImageNetSR):
376
+ def __init__(self, **kwargs):
377
+ super().__init__(**kwargs)
378
+
379
+ def get_base(self):
380
+ with open("data/imagenet_train_hr_indices.p", "rb") as f:
381
+ indices = pickle.load(f)
382
+ dset = ImageNetTrain(process_images=False,)
383
+ return Subset(dset, indices)
384
+
385
+
386
+ class ImageNetSRValidation(ImageNetSR):
387
+ def __init__(self, **kwargs):
388
+ super().__init__(**kwargs)
389
+
390
+ def get_base(self):
391
+ with open("data/imagenet_val_hr_indices.p", "rb") as f:
392
+ indices = pickle.load(f)
393
+ dset = ImageNetValidation(process_images=False,)
394
+ return Subset(dset, indices)
models/ldm/data/inpainting/__init__.py ADDED
File without changes
models/ldm/data/inpainting/synthetic_mask.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from PIL import Image, ImageDraw
2
+ import numpy as np
3
+
4
+ settings = {
5
+ "256narrow": {
6
+ "p_irr": 1,
7
+ "min_n_irr": 4,
8
+ "max_n_irr": 50,
9
+ "max_l_irr": 40,
10
+ "max_w_irr": 10,
11
+ "min_n_box": None,
12
+ "max_n_box": None,
13
+ "min_s_box": None,
14
+ "max_s_box": None,
15
+ "marg": None,
16
+ },
17
+ "256train": {
18
+ "p_irr": 0.5,
19
+ "min_n_irr": 1,
20
+ "max_n_irr": 5,
21
+ "max_l_irr": 200,
22
+ "max_w_irr": 100,
23
+ "min_n_box": 1,
24
+ "max_n_box": 4,
25
+ "min_s_box": 30,
26
+ "max_s_box": 150,
27
+ "marg": 10,
28
+ },
29
+ "512train": { # TODO: experimental
30
+ "p_irr": 0.5,
31
+ "min_n_irr": 1,
32
+ "max_n_irr": 5,
33
+ "max_l_irr": 450,
34
+ "max_w_irr": 250,
35
+ "min_n_box": 1,
36
+ "max_n_box": 4,
37
+ "min_s_box": 30,
38
+ "max_s_box": 300,
39
+ "marg": 10,
40
+ },
41
+ "512train-large": { # TODO: experimental
42
+ "p_irr": 0.5,
43
+ "min_n_irr": 1,
44
+ "max_n_irr": 5,
45
+ "max_l_irr": 450,
46
+ "max_w_irr": 400,
47
+ "min_n_box": 1,
48
+ "max_n_box": 4,
49
+ "min_s_box": 75,
50
+ "max_s_box": 450,
51
+ "marg": 10,
52
+ },
53
+ }
54
+
55
+
56
+ def gen_segment_mask(mask, start, end, brush_width):
57
+ mask = mask > 0
58
+ mask = (255 * mask).astype(np.uint8)
59
+ mask = Image.fromarray(mask)
60
+ draw = ImageDraw.Draw(mask)
61
+ draw.line([start, end], fill=255, width=brush_width, joint="curve")
62
+ mask = np.array(mask) / 255
63
+ return mask
64
+
65
+
66
+ def gen_box_mask(mask, masked):
67
+ x_0, y_0, w, h = masked
68
+ mask[y_0:y_0 + h, x_0:x_0 + w] = 1
69
+ return mask
70
+
71
+
72
+ def gen_round_mask(mask, masked, radius):
73
+ x_0, y_0, w, h = masked
74
+ xy = [(x_0, y_0), (x_0 + w, y_0 + w)]
75
+
76
+ mask = mask > 0
77
+ mask = (255 * mask).astype(np.uint8)
78
+ mask = Image.fromarray(mask)
79
+ draw = ImageDraw.Draw(mask)
80
+ draw.rounded_rectangle(xy, radius=radius, fill=255)
81
+ mask = np.array(mask) / 255
82
+ return mask
83
+
84
+
85
+ def gen_large_mask(prng, img_h, img_w,
86
+ marg, p_irr, min_n_irr, max_n_irr, max_l_irr, max_w_irr,
87
+ min_n_box, max_n_box, min_s_box, max_s_box):
88
+ """
89
+ img_h: int, an image height
90
+ img_w: int, an image width
91
+ marg: int, a margin for a box starting coordinate
92
+ p_irr: float, 0 <= p_irr <= 1, a probability of a polygonal chain mask
93
+
94
+ min_n_irr: int, min number of segments
95
+ max_n_irr: int, max number of segments
96
+ max_l_irr: max length of a segment in polygonal chain
97
+ max_w_irr: max width of a segment in polygonal chain
98
+
99
+ min_n_box: int, min bound for the number of box primitives
100
+ max_n_box: int, max bound for the number of box primitives
101
+ min_s_box: int, min length of a box side
102
+ max_s_box: int, max length of a box side
103
+ """
104
+
105
+ mask = np.zeros((img_h, img_w))
106
+ uniform = prng.randint
107
+
108
+ if np.random.uniform(0, 1) < p_irr: # generate polygonal chain
109
+ n = uniform(min_n_irr, max_n_irr) # sample number of segments
110
+
111
+ for _ in range(n):
112
+ y = uniform(0, img_h) # sample a starting point
113
+ x = uniform(0, img_w)
114
+
115
+ a = uniform(0, 360) # sample angle
116
+ l = uniform(10, max_l_irr) # sample segment length
117
+ w = uniform(5, max_w_irr) # sample a segment width
118
+
119
+ # draw segment starting from (x,y) to (x_,y_) using brush of width w
120
+ x_ = x + l * np.sin(a)
121
+ y_ = y + l * np.cos(a)
122
+
123
+ mask = gen_segment_mask(mask, start=(x, y), end=(x_, y_), brush_width=w)
124
+ x, y = x_, y_
125
+ else: # generate Box masks
126
+ n = uniform(min_n_box, max_n_box) # sample number of rectangles
127
+
128
+ for _ in range(n):
129
+ h = uniform(min_s_box, max_s_box) # sample box shape
130
+ w = uniform(min_s_box, max_s_box)
131
+
132
+ x_0 = uniform(marg, img_w - marg - w) # sample upper-left coordinates of box
133
+ y_0 = uniform(marg, img_h - marg - h)
134
+
135
+ if np.random.uniform(0, 1) < 0.5:
136
+ mask = gen_box_mask(mask, masked=(x_0, y_0, w, h))
137
+ else:
138
+ r = uniform(0, 60) # sample radius
139
+ mask = gen_round_mask(mask, masked=(x_0, y_0, w, h), radius=r)
140
+ return mask
141
+
142
+
143
+ make_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["256train"])
144
+ make_narrow_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["256narrow"])
145
+ make_512_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["512train"])
146
+ make_512_lama_mask_large = lambda prng, h, w: gen_large_mask(prng, h, w, **settings["512train-large"])
147
+
148
+
149
+ MASK_MODES = {
150
+ "256train": make_lama_mask,
151
+ "256narrow": make_narrow_lama_mask,
152
+ "512train": make_512_lama_mask,
153
+ "512train-large": make_512_lama_mask_large
154
+ }
155
+
156
+ if __name__ == "__main__":
157
+ import sys
158
+
159
+ out = sys.argv[1]
160
+
161
+ prng = np.random.RandomState(1)
162
+ kwargs = settings["256train"]
163
+ mask = gen_large_mask(prng, 256, 256, **kwargs)
164
+ mask = (255 * mask).astype(np.uint8)
165
+ mask = Image.fromarray(mask)
166
+ mask.save(out)
models/ldm/data/laion.py ADDED
@@ -0,0 +1,537 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import webdataset as wds
2
+ import kornia
3
+ from PIL import Image
4
+ import io
5
+ import os
6
+ import torchvision
7
+ from PIL import Image
8
+ import glob
9
+ import random
10
+ import numpy as np
11
+ import pytorch_lightning as pl
12
+ from tqdm import tqdm
13
+ from omegaconf import OmegaConf
14
+ from einops import rearrange
15
+ import torch
16
+ from webdataset.handlers import warn_and_continue
17
+
18
+
19
+ from ldm.util import instantiate_from_config
20
+ from ldm.data.inpainting.synthetic_mask import gen_large_mask, MASK_MODES
21
+ from ldm.data.base import PRNGMixin
22
+
23
+
24
+ class DataWithWings(torch.utils.data.IterableDataset):
25
+ def __init__(self, min_size, transform=None, target_transform=None):
26
+ self.min_size = min_size
27
+ self.transform = transform if transform is not None else nn.Identity()
28
+ self.target_transform = target_transform if target_transform is not None else nn.Identity()
29
+ self.kv = OnDiskKV(file='/home/ubuntu/laion5B-watermark-safety-ordered', key_format='q', value_format='ee')
30
+ self.kv_aesthetic = OnDiskKV(file='/home/ubuntu/laion5B-aesthetic-tags-kv', key_format='q', value_format='e')
31
+ self.pwatermark_threshold = 0.8
32
+ self.punsafe_threshold = 0.5
33
+ self.aesthetic_threshold = 5.
34
+ self.total_samples = 0
35
+ self.samples = 0
36
+ location = 'pipe:aws s3 cp --quiet s3://s-datasets/laion5b/laion2B-data/{000000..231349}.tar -'
37
+
38
+ self.inner_dataset = wds.DataPipeline(
39
+ wds.ResampledShards(location),
40
+ wds.tarfile_to_samples(handler=wds.warn_and_continue),
41
+ wds.shuffle(1000, handler=wds.warn_and_continue),
42
+ wds.decode('pilrgb', handler=wds.warn_and_continue),
43
+ wds.map(self._add_tags, handler=wds.ignore_and_continue),
44
+ wds.select(self._filter_predicate),
45
+ wds.map_dict(jpg=self.transform, txt=self.target_transform, punsafe=self._punsafe_to_class, handler=wds.warn_and_continue),
46
+ wds.to_tuple('jpg', 'txt', 'punsafe', handler=wds.warn_and_continue),
47
+ )
48
+
49
+ @staticmethod
50
+ def _compute_hash(url, text):
51
+ if url is None:
52
+ url = ''
53
+ if text is None:
54
+ text = ''
55
+ total = (url + text).encode('utf-8')
56
+ return mmh3.hash64(total)[0]
57
+
58
+ def _add_tags(self, x):
59
+ hsh = self._compute_hash(x['json']['url'], x['txt'])
60
+ pwatermark, punsafe = self.kv[hsh]
61
+ aesthetic = self.kv_aesthetic[hsh][0]
62
+ return {**x, 'pwatermark': pwatermark, 'punsafe': punsafe, 'aesthetic': aesthetic}
63
+
64
+ def _punsafe_to_class(self, punsafe):
65
+ return torch.tensor(punsafe >= self.punsafe_threshold).long()
66
+
67
+ def _filter_predicate(self, x):
68
+ try:
69
+ return x['pwatermark'] < self.pwatermark_threshold and x['aesthetic'] >= self.aesthetic_threshold and x['json']['original_width'] >= self.min_size and x['json']['original_height'] >= self.min_size
70
+ except:
71
+ return False
72
+
73
+ def __iter__(self):
74
+ return iter(self.inner_dataset)
75
+
76
+
77
+ def dict_collation_fn(samples, combine_tensors=True, combine_scalars=True):
78
+ """Take a list of samples (as dictionary) and create a batch, preserving the keys.
79
+ If `tensors` is True, `ndarray` objects are combined into
80
+ tensor batches.
81
+ :param dict samples: list of samples
82
+ :param bool tensors: whether to turn lists of ndarrays into a single ndarray
83
+ :returns: single sample consisting of a batch
84
+ :rtype: dict
85
+ """
86
+ keys = set.intersection(*[set(sample.keys()) for sample in samples])
87
+ batched = {key: [] for key in keys}
88
+
89
+ for s in samples:
90
+ [batched[key].append(s[key]) for key in batched]
91
+
92
+ result = {}
93
+ for key in batched:
94
+ if isinstance(batched[key][0], (int, float)):
95
+ if combine_scalars:
96
+ result[key] = np.array(list(batched[key]))
97
+ elif isinstance(batched[key][0], torch.Tensor):
98
+ if combine_tensors:
99
+ result[key] = torch.stack(list(batched[key]))
100
+ elif isinstance(batched[key][0], np.ndarray):
101
+ if combine_tensors:
102
+ result[key] = np.array(list(batched[key]))
103
+ else:
104
+ result[key] = list(batched[key])
105
+ return result
106
+
107
+
108
+ class WebDataModuleFromConfig(pl.LightningDataModule):
109
+ def __init__(self, tar_base, batch_size, train=None, validation=None,
110
+ test=None, num_workers=4, multinode=True, min_size=None,
111
+ max_pwatermark=1.0,
112
+ **kwargs):
113
+ super().__init__(self)
114
+ print(f'Setting tar base to {tar_base}')
115
+ self.tar_base = tar_base
116
+ self.batch_size = batch_size
117
+ self.num_workers = num_workers
118
+ self.train = train
119
+ self.validation = validation
120
+ self.test = test
121
+ self.multinode = multinode
122
+ self.min_size = min_size # filter out very small images
123
+ self.max_pwatermark = max_pwatermark # filter out watermarked images
124
+
125
+ def make_loader(self, dataset_config, train=True):
126
+ if 'image_transforms' in dataset_config:
127
+ image_transforms = [instantiate_from_config(tt) for tt in dataset_config.image_transforms]
128
+ else:
129
+ image_transforms = []
130
+
131
+ image_transforms.extend([torchvision.transforms.ToTensor(),
132
+ torchvision.transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
133
+ image_transforms = torchvision.transforms.Compose(image_transforms)
134
+
135
+ if 'transforms' in dataset_config:
136
+ transforms_config = OmegaConf.to_container(dataset_config.transforms)
137
+ else:
138
+ transforms_config = dict()
139
+
140
+ transform_dict = {dkey: load_partial_from_config(transforms_config[dkey])
141
+ if transforms_config[dkey] != 'identity' else identity
142
+ for dkey in transforms_config}
143
+ img_key = dataset_config.get('image_key', 'jpeg')
144
+ transform_dict.update({img_key: image_transforms})
145
+
146
+ if 'postprocess' in dataset_config:
147
+ postprocess = instantiate_from_config(dataset_config['postprocess'])
148
+ else:
149
+ postprocess = None
150
+
151
+ shuffle = dataset_config.get('shuffle', 0)
152
+ shardshuffle = shuffle > 0
153
+
154
+ nodesplitter = wds.shardlists.split_by_node if self.multinode else wds.shardlists.single_node_only
155
+
156
+ if self.tar_base == "__improvedaesthetic__":
157
+ print("## Warning, loading the same improved aesthetic dataset "
158
+ "for all splits and ignoring shards parameter.")
159
+ tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{000000..060207}.tar -"
160
+ else:
161
+ tars = os.path.join(self.tar_base, dataset_config.shards)
162
+
163
+ dset = wds.WebDataset(
164
+ tars,
165
+ nodesplitter=nodesplitter,
166
+ shardshuffle=shardshuffle,
167
+ handler=wds.warn_and_continue).repeat().shuffle(shuffle)
168
+ print(f'Loading webdataset with {len(dset.pipeline[0].urls)} shards.')
169
+
170
+ dset = (dset
171
+ .select(self.filter_keys)
172
+ .decode('pil', handler=wds.warn_and_continue)
173
+ .select(self.filter_size)
174
+ .map_dict(**transform_dict, handler=wds.warn_and_continue)
175
+ )
176
+ if postprocess is not None:
177
+ dset = dset.map(postprocess)
178
+ dset = (dset
179
+ .batched(self.batch_size, partial=False,
180
+ collation_fn=dict_collation_fn)
181
+ )
182
+
183
+ loader = wds.WebLoader(dset, batch_size=None, shuffle=False,
184
+ num_workers=self.num_workers)
185
+
186
+ return loader
187
+
188
+ def filter_size(self, x):
189
+ try:
190
+ valid = True
191
+ if self.min_size is not None and self.min_size > 1:
192
+ try:
193
+ valid = valid and x['json']['original_width'] >= self.min_size and x['json']['original_height'] >= self.min_size
194
+ except Exception:
195
+ valid = False
196
+ if self.max_pwatermark is not None and self.max_pwatermark < 1.0:
197
+ try:
198
+ valid = valid and x['json']['pwatermark'] <= self.max_pwatermark
199
+ except Exception:
200
+ valid = False
201
+ return valid
202
+ except Exception:
203
+ return False
204
+
205
+ def filter_keys(self, x):
206
+ try:
207
+ return ("jpg" in x) and ("txt" in x)
208
+ except Exception:
209
+ return False
210
+
211
+ def train_dataloader(self):
212
+ return self.make_loader(self.train)
213
+
214
+ def val_dataloader(self):
215
+ return self.make_loader(self.validation, train=False)
216
+
217
+ def test_dataloader(self):
218
+ return self.make_loader(self.test, train=False)
219
+
220
+
221
+ from ldm.modules.image_degradation import degradation_fn_bsr_light
222
+ import cv2
223
+
224
+ class AddLR(object):
225
+ def __init__(self, factor, output_size, initial_size=None, image_key="jpg"):
226
+ self.factor = factor
227
+ self.output_size = output_size
228
+ self.image_key = image_key
229
+ self.initial_size = initial_size
230
+
231
+ def pt2np(self, x):
232
+ x = ((x+1.0)*127.5).clamp(0, 255).to(dtype=torch.uint8).detach().cpu().numpy()
233
+ return x
234
+
235
+ def np2pt(self, x):
236
+ x = torch.from_numpy(x)/127.5-1.0
237
+ return x
238
+
239
+ def __call__(self, sample):
240
+ # sample['jpg'] is tensor hwc in [-1, 1] at this point
241
+ x = self.pt2np(sample[self.image_key])
242
+ if self.initial_size is not None:
243
+ x = cv2.resize(x, (self.initial_size, self.initial_size), interpolation=2)
244
+ x = degradation_fn_bsr_light(x, sf=self.factor)['image']
245
+ x = cv2.resize(x, (self.output_size, self.output_size), interpolation=2)
246
+ x = self.np2pt(x)
247
+ sample['lr'] = x
248
+ return sample
249
+
250
+ class AddBW(object):
251
+ def __init__(self, image_key="jpg"):
252
+ self.image_key = image_key
253
+
254
+ def pt2np(self, x):
255
+ x = ((x+1.0)*127.5).clamp(0, 255).to(dtype=torch.uint8).detach().cpu().numpy()
256
+ return x
257
+
258
+ def np2pt(self, x):
259
+ x = torch.from_numpy(x)/127.5-1.0
260
+ return x
261
+
262
+ def __call__(self, sample):
263
+ # sample['jpg'] is tensor hwc in [-1, 1] at this point
264
+ x = sample[self.image_key]
265
+ w = torch.rand(3, device=x.device)
266
+ w /= w.sum()
267
+ out = torch.einsum('hwc,c->hw', x, w)
268
+
269
+ # Keep as 3ch so we can pass to encoder, also we might want to add hints
270
+ sample['lr'] = out.unsqueeze(-1).tile(1,1,3)
271
+ return sample
272
+
273
+ class AddMask(PRNGMixin):
274
+ def __init__(self, mode="512train", p_drop=0.):
275
+ super().__init__()
276
+ assert mode in list(MASK_MODES.keys()), f'unknown mask generation mode "{mode}"'
277
+ self.make_mask = MASK_MODES[mode]
278
+ self.p_drop = p_drop
279
+
280
+ def __call__(self, sample):
281
+ # sample['jpg'] is tensor hwc in [-1, 1] at this point
282
+ x = sample['jpg']
283
+ mask = self.make_mask(self.prng, x.shape[0], x.shape[1])
284
+ if self.prng.choice(2, p=[1 - self.p_drop, self.p_drop]):
285
+ mask = np.ones_like(mask)
286
+ mask[mask < 0.5] = 0
287
+ mask[mask > 0.5] = 1
288
+ mask = torch.from_numpy(mask[..., None])
289
+ sample['mask'] = mask
290
+ sample['masked_image'] = x * (mask < 0.5)
291
+ return sample
292
+
293
+
294
+ class AddEdge(PRNGMixin):
295
+ def __init__(self, mode="512train", mask_edges=True):
296
+ super().__init__()
297
+ assert mode in list(MASK_MODES.keys()), f'unknown mask generation mode "{mode}"'
298
+ self.make_mask = MASK_MODES[mode]
299
+ self.n_down_choices = [0]
300
+ self.sigma_choices = [1, 2]
301
+ self.mask_edges = mask_edges
302
+
303
+ @torch.no_grad()
304
+ def __call__(self, sample):
305
+ # sample['jpg'] is tensor hwc in [-1, 1] at this point
306
+ x = sample['jpg']
307
+
308
+ mask = self.make_mask(self.prng, x.shape[0], x.shape[1])
309
+ mask[mask < 0.5] = 0
310
+ mask[mask > 0.5] = 1
311
+ mask = torch.from_numpy(mask[..., None])
312
+ sample['mask'] = mask
313
+
314
+ n_down_idx = self.prng.choice(len(self.n_down_choices))
315
+ sigma_idx = self.prng.choice(len(self.sigma_choices))
316
+
317
+ n_choices = len(self.n_down_choices)*len(self.sigma_choices)
318
+ raveled_idx = np.ravel_multi_index((n_down_idx, sigma_idx),
319
+ (len(self.n_down_choices), len(self.sigma_choices)))
320
+ normalized_idx = raveled_idx/max(1, n_choices-1)
321
+
322
+ n_down = self.n_down_choices[n_down_idx]
323
+ sigma = self.sigma_choices[sigma_idx]
324
+
325
+ kernel_size = 4*sigma+1
326
+ kernel_size = (kernel_size, kernel_size)
327
+ sigma = (sigma, sigma)
328
+ canny = kornia.filters.Canny(
329
+ low_threshold=0.1,
330
+ high_threshold=0.2,
331
+ kernel_size=kernel_size,
332
+ sigma=sigma,
333
+ hysteresis=True,
334
+ )
335
+ y = (x+1.0)/2.0 # in 01
336
+ y = y.unsqueeze(0).permute(0, 3, 1, 2).contiguous()
337
+
338
+ # down
339
+ for i_down in range(n_down):
340
+ size = min(y.shape[-2], y.shape[-1])//2
341
+ y = kornia.geometry.transform.resize(y, size, antialias=True)
342
+
343
+ # edge
344
+ _, y = canny(y)
345
+
346
+ if n_down > 0:
347
+ size = x.shape[0], x.shape[1]
348
+ y = kornia.geometry.transform.resize(y, size, interpolation="nearest")
349
+
350
+ y = y.permute(0, 2, 3, 1)[0].expand(-1, -1, 3).contiguous()
351
+ y = y*2.0-1.0
352
+
353
+ if self.mask_edges:
354
+ sample['masked_image'] = y * (mask < 0.5)
355
+ else:
356
+ sample['masked_image'] = y
357
+ sample['mask'] = torch.zeros_like(sample['mask'])
358
+
359
+ # concat normalized idx
360
+ sample['smoothing_strength'] = torch.ones_like(sample['mask'])*normalized_idx
361
+
362
+ return sample
363
+
364
+
365
+ def example00():
366
+ url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/000000.tar -"
367
+ dataset = wds.WebDataset(url)
368
+ example = next(iter(dataset))
369
+ for k in example:
370
+ print(k, type(example[k]))
371
+
372
+ print(example["__key__"])
373
+ for k in ["json", "txt"]:
374
+ print(example[k].decode())
375
+
376
+ image = Image.open(io.BytesIO(example["jpg"]))
377
+ outdir = "tmp"
378
+ os.makedirs(outdir, exist_ok=True)
379
+ image.save(os.path.join(outdir, example["__key__"] + ".png"))
380
+
381
+
382
+ def load_example(example):
383
+ return {
384
+ "key": example["__key__"],
385
+ "image": Image.open(io.BytesIO(example["jpg"])),
386
+ "text": example["txt"].decode(),
387
+ }
388
+
389
+
390
+ for i, example in tqdm(enumerate(dataset)):
391
+ ex = load_example(example)
392
+ print(ex["image"].size, ex["text"])
393
+ if i >= 100:
394
+ break
395
+
396
+
397
+ def example01():
398
+ # the first laion shards contain ~10k examples each
399
+ url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/{000000..000002}.tar -"
400
+
401
+ batch_size = 3
402
+ shuffle_buffer = 10000
403
+ dset = wds.WebDataset(
404
+ url,
405
+ nodesplitter=wds.shardlists.split_by_node,
406
+ shardshuffle=True,
407
+ )
408
+ dset = (dset
409
+ .shuffle(shuffle_buffer, initial=shuffle_buffer)
410
+ .decode('pil', handler=warn_and_continue)
411
+ .batched(batch_size, partial=False,
412
+ collation_fn=dict_collation_fn)
413
+ )
414
+
415
+ num_workers = 2
416
+ loader = wds.WebLoader(dset, batch_size=None, shuffle=False, num_workers=num_workers)
417
+
418
+ batch_sizes = list()
419
+ keys_per_epoch = list()
420
+ for epoch in range(5):
421
+ keys = list()
422
+ for batch in tqdm(loader):
423
+ batch_sizes.append(len(batch["__key__"]))
424
+ keys.append(batch["__key__"])
425
+
426
+ for bs in batch_sizes:
427
+ assert bs==batch_size
428
+ print(f"{len(batch_sizes)} batches of size {batch_size}.")
429
+ batch_sizes = list()
430
+
431
+ keys_per_epoch.append(keys)
432
+ for i_batch in [0, 1, -1]:
433
+ print(f"Batch {i_batch} of epoch {epoch}:")
434
+ print(keys[i_batch])
435
+ print("next epoch.")
436
+
437
+
438
+ def example02():
439
+ from omegaconf import OmegaConf
440
+ from torch.utils.data.distributed import DistributedSampler
441
+ from torch.utils.data import IterableDataset
442
+ from torch.utils.data import DataLoader, RandomSampler, Sampler, SequentialSampler
443
+ from pytorch_lightning.trainer.supporters import CombinedLoader, CycleIterator
444
+
445
+ #config = OmegaConf.load("configs/stable-diffusion/txt2img-1p4B-multinode-clip-encoder-high-res-512.yaml")
446
+ #config = OmegaConf.load("configs/stable-diffusion/txt2img-upscale-clip-encoder-f16-1024.yaml")
447
+ config = OmegaConf.load("configs/stable-diffusion/txt2img-v2-clip-encoder-improved_aesthetics-256.yaml")
448
+ datamod = WebDataModuleFromConfig(**config["data"]["params"])
449
+ dataloader = datamod.train_dataloader()
450
+
451
+ for batch in dataloader:
452
+ print(batch.keys())
453
+ print(batch["jpg"].shape)
454
+ break
455
+
456
+
457
+ def example03():
458
+ # improved aesthetics
459
+ tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{000000..060207}.tar -"
460
+ dataset = wds.WebDataset(tars)
461
+
462
+ def filter_keys(x):
463
+ try:
464
+ return ("jpg" in x) and ("txt" in x)
465
+ except Exception:
466
+ return False
467
+
468
+ def filter_size(x):
469
+ try:
470
+ return x['json']['original_width'] >= 512 and x['json']['original_height'] >= 512
471
+ except Exception:
472
+ return False
473
+
474
+ def filter_watermark(x):
475
+ try:
476
+ return x['json']['pwatermark'] < 0.5
477
+ except Exception:
478
+ return False
479
+
480
+ dataset = (dataset
481
+ .select(filter_keys)
482
+ .decode('pil', handler=wds.warn_and_continue))
483
+ n_save = 20
484
+ n_total = 0
485
+ n_large = 0
486
+ n_large_nowm = 0
487
+ for i, example in enumerate(dataset):
488
+ n_total += 1
489
+ if filter_size(example):
490
+ n_large += 1
491
+ if filter_watermark(example):
492
+ n_large_nowm += 1
493
+ if n_large_nowm < n_save+1:
494
+ image = example["jpg"]
495
+ image.save(os.path.join("tmp", f"{n_large_nowm-1:06}.png"))
496
+
497
+ if i%500 == 0:
498
+ print(i)
499
+ print(f"Large: {n_large}/{n_total} | {n_large/n_total*100:.2f}%")
500
+ if n_large > 0:
501
+ print(f"No Watermark: {n_large_nowm}/{n_large} | {n_large_nowm/n_large*100:.2f}%")
502
+
503
+
504
+
505
+ def example04():
506
+ # improved aesthetics
507
+ for i_shard in range(60208)[::-1]:
508
+ print(i_shard)
509
+ tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{:06}.tar -".format(i_shard)
510
+ dataset = wds.WebDataset(tars)
511
+
512
+ def filter_keys(x):
513
+ try:
514
+ return ("jpg" in x) and ("txt" in x)
515
+ except Exception:
516
+ return False
517
+
518
+ def filter_size(x):
519
+ try:
520
+ return x['json']['original_width'] >= 512 and x['json']['original_height'] >= 512
521
+ except Exception:
522
+ return False
523
+
524
+ dataset = (dataset
525
+ .select(filter_keys)
526
+ .decode('pil', handler=wds.warn_and_continue))
527
+ try:
528
+ example = next(iter(dataset))
529
+ except Exception:
530
+ print(f"Error @ {i_shard}")
531
+
532
+
533
+ if __name__ == "__main__":
534
+ #example01()
535
+ #example02()
536
+ example03()
537
+ #example04()
models/ldm/data/legacy.py ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ class FolderData(Dataset):
3
+ def __init__(self,
4
+ root_dir,
5
+ caption_file=None,
6
+ image_transforms=[],
7
+ ext="jpg",
8
+ default_caption="",
9
+ postprocess=None,
10
+ return_paths=False,
11
+ ) -> None:
12
+ """Create a dataset from a folder of images.
13
+ If you pass in a root directory it will be searched for images
14
+ ending in ext (ext can be a list)
15
+ """
16
+ self.root_dir = Path(root_dir)
17
+ self.default_caption = default_caption
18
+ self.return_paths = return_paths
19
+ if isinstance(postprocess, DictConfig):
20
+ postprocess = instantiate_from_config(postprocess)
21
+ self.postprocess = postprocess
22
+ if caption_file is not None:
23
+ with open(caption_file, "rt") as f:
24
+ ext = Path(caption_file).suffix.lower()
25
+ if ext == ".json":
26
+ captions = json.load(f)
27
+ elif ext == ".jsonl":
28
+ lines = f.readlines()
29
+ lines = [json.loads(x) for x in lines]
30
+ captions = {x["file_name"]: x["text"].strip("\n") for x in lines}
31
+ else:
32
+ raise ValueError(f"Unrecognised format: {ext}")
33
+ self.captions = captions
34
+ else:
35
+ self.captions = None
36
+
37
+ if not isinstance(ext, (tuple, list, ListConfig)):
38
+ ext = [ext]
39
+
40
+ # Only used if there is no caption file
41
+ self.paths = []
42
+ for e in ext:
43
+ self.paths.extend(sorted(list(self.root_dir.rglob(f"*.{e}"))))
44
+ self.tform = make_tranforms(image_transforms)
45
+
46
+ def __len__(self):
47
+ if self.captions is not None:
48
+ return len(self.captions.keys())
49
+ else:
50
+ return len(self.paths)
51
+
52
+ def __getitem__(self, index):
53
+ data = {}
54
+ if self.captions is not None:
55
+ chosen = list(self.captions.keys())[index]
56
+ caption = self.captions.get(chosen, None)
57
+ if caption is None:
58
+ caption = self.default_caption
59
+ filename = self.root_dir/chosen
60
+ else:
61
+ filename = self.paths[index]
62
+
63
+ if self.return_paths:
64
+ data["path"] = str(filename)
65
+
66
+ im = Image.open(filename).convert("RGB")
67
+ im = self.process_im(im)
68
+ data["image"] = im
69
+
70
+ if self.captions is not None:
71
+ data["txt"] = caption
72
+ else:
73
+ data["txt"] = self.default_caption
74
+
75
+ if self.postprocess is not None:
76
+ data = self.postprocess(data)
77
+
78
+ return data
79
+
80
+ def process_im(self, im):
81
+ im = im.convert("RGB")
82
+ return self.tform(im)
83
+ import random
84
+
85
+ class TransformDataset():
86
+ def __init__(self, ds, extra_label="sksbspic"):
87
+ self.ds = ds
88
+ self.extra_label = extra_label
89
+ self.transforms = {
90
+ "align": transforms.Resize(768),
91
+ "centerzoom": transforms.CenterCrop(768),
92
+ "randzoom": transforms.RandomCrop(768),
93
+ }
94
+
95
+
96
+ def __getitem__(self, index):
97
+ data = self.ds[index]
98
+
99
+ im = data['image']
100
+ im = im.permute(2,0,1)
101
+ # In case data is smaller than expected
102
+ im = transforms.Resize(1024)(im)
103
+
104
+ tform_name = random.choice(list(self.transforms.keys()))
105
+ im = self.transforms[tform_name](im)
106
+
107
+ im = im.permute(1,2,0)
108
+
109
+ data['image'] = im
110
+ data['txt'] = data['txt'] + f" {self.extra_label} {tform_name}"
111
+
112
+ return data
113
+
114
+ def __len__(self):
115
+ return len(self.ds)
116
+
117
+ def hf_dataset(
118
+ name,
119
+ image_transforms=[],
120
+ image_column="image",
121
+ text_column="text",
122
+ split='train',
123
+ image_key='image',
124
+ caption_key='txt',
125
+ ):
126
+ """Make huggingface dataset with appropriate list of transforms applied
127
+ """
128
+ ds = load_dataset(name, split=split)
129
+ tform = make_tranforms(image_transforms)
130
+
131
+ assert image_column in ds.column_names, f"Didn't find column {image_column} in {ds.column_names}"
132
+ assert text_column in ds.column_names, f"Didn't find column {text_column} in {ds.column_names}"
133
+
134
+ def pre_process(examples):
135
+ processed = {}
136
+ processed[image_key] = [tform(im) for im in examples[image_column]]
137
+ processed[caption_key] = examples[text_column]
138
+ return processed
139
+
140
+ ds.set_transform(pre_process)
141
+ return ds
142
+
143
+ class TextOnly(Dataset):
144
+ def __init__(self, captions, output_size, image_key="image", caption_key="txt", n_gpus=1):
145
+ """Returns only captions with dummy images"""
146
+ self.output_size = output_size
147
+ self.image_key = image_key
148
+ self.caption_key = caption_key
149
+ if isinstance(captions, Path):
150
+ self.captions = self._load_caption_file(captions)
151
+ else:
152
+ self.captions = captions
153
+
154
+ if n_gpus > 1:
155
+ # hack to make sure that all the captions appear on each gpu
156
+ repeated = [n_gpus*[x] for x in self.captions]
157
+ self.captions = []
158
+ [self.captions.extend(x) for x in repeated]
159
+
160
+ def __len__(self):
161
+ return len(self.captions)
162
+
163
+ def __getitem__(self, index):
164
+ dummy_im = torch.zeros(3, self.output_size, self.output_size)
165
+ dummy_im = rearrange(dummy_im * 2. - 1., 'c h w -> h w c')
166
+ return {self.image_key: dummy_im, self.caption_key: self.captions[index]}
167
+
168
+ def _load_caption_file(self, filename):
169
+ with open(filename, 'rt') as f:
170
+ captions = f.readlines()
171
+ return [x.strip('\n') for x in captions]
172
+
173
+
174
+
175
+ import random
176
+ import json
177
+ class IdRetreivalDataset(FolderData):
178
+ def __init__(self, ret_file, *args, **kwargs):
179
+ super().__init__(*args, **kwargs)
180
+ with open(ret_file, "rt") as f:
181
+ self.ret = json.load(f)
182
+
183
+ def __getitem__(self, index):
184
+ data = super().__getitem__(index)
185
+ key = self.paths[index].name
186
+ matches = self.ret[key]
187
+ if len(matches) > 0:
188
+ retreived = random.choice(matches)
189
+ else:
190
+ retreived = key
191
+ filename = self.root_dir/retreived
192
+ im = Image.open(filename).convert("RGB")
193
+ im = self.process_im(im)
194
+ # data["match"] = im
195
+ data["match"] = torch.cat((data["image"], im), dim=-1)
196
+ return data
models/ldm/data/lsun.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ import PIL
4
+ from PIL import Image
5
+ from torch.utils.data import Dataset
6
+ from torchvision import transforms
7
+
8
+
9
+ class LSUNBase(Dataset):
10
+ def __init__(self,
11
+ txt_file,
12
+ data_root,
13
+ size=None,
14
+ interpolation="bicubic",
15
+ flip_p=0.5
16
+ ):
17
+ self.data_paths = txt_file
18
+ self.data_root = data_root
19
+ with open(self.data_paths, "r") as f:
20
+ self.image_paths = f.read().splitlines()
21
+ self._length = len(self.image_paths)
22
+ self.labels = {
23
+ "relative_file_path_": [l for l in self.image_paths],
24
+ "file_path_": [os.path.join(self.data_root, l)
25
+ for l in self.image_paths],
26
+ }
27
+
28
+ self.size = size
29
+ self.interpolation = {"linear": PIL.Image.LINEAR,
30
+ "bilinear": PIL.Image.BILINEAR,
31
+ "bicubic": PIL.Image.BICUBIC,
32
+ "lanczos": PIL.Image.LANCZOS,
33
+ }[interpolation]
34
+ self.flip = transforms.RandomHorizontalFlip(p=flip_p)
35
+
36
+ def __len__(self):
37
+ return self._length
38
+
39
+ def __getitem__(self, i):
40
+ example = dict((k, self.labels[k][i]) for k in self.labels)
41
+ image = Image.open(example["file_path_"])
42
+ if not image.mode == "RGB":
43
+ image = image.convert("RGB")
44
+
45
+ # default to score-sde preprocessing
46
+ img = np.array(image).astype(np.uint8)
47
+ crop = min(img.shape[0], img.shape[1])
48
+ h, w, = img.shape[0], img.shape[1]
49
+ img = img[(h - crop) // 2:(h + crop) // 2,
50
+ (w - crop) // 2:(w + crop) // 2]
51
+
52
+ image = Image.fromarray(img)
53
+ if self.size is not None:
54
+ image = image.resize((self.size, self.size), resample=self.interpolation)
55
+
56
+ image = self.flip(image)
57
+ image = np.array(image).astype(np.uint8)
58
+ example["image"] = (image / 127.5 - 1.0).astype(np.float32)
59
+ return example
60
+
61
+
62
+ class LSUNChurchesTrain(LSUNBase):
63
+ def __init__(self, **kwargs):
64
+ super().__init__(txt_file="data/lsun/church_outdoor_train.txt", data_root="data/lsun/churches", **kwargs)
65
+
66
+
67
+ class LSUNChurchesValidation(LSUNBase):
68
+ def __init__(self, flip_p=0., **kwargs):
69
+ super().__init__(txt_file="data/lsun/church_outdoor_val.txt", data_root="data/lsun/churches",
70
+ flip_p=flip_p, **kwargs)
71
+
72
+
73
+ class LSUNBedroomsTrain(LSUNBase):
74
+ def __init__(self, **kwargs):
75
+ super().__init__(txt_file="data/lsun/bedrooms_train.txt", data_root="data/lsun/bedrooms", **kwargs)
76
+
77
+
78
+ class LSUNBedroomsValidation(LSUNBase):
79
+ def __init__(self, flip_p=0.0, **kwargs):
80
+ super().__init__(txt_file="data/lsun/bedrooms_val.txt", data_root="data/lsun/bedrooms",
81
+ flip_p=flip_p, **kwargs)
82
+
83
+
84
+ class LSUNCatsTrain(LSUNBase):
85
+ def __init__(self, **kwargs):
86
+ super().__init__(txt_file="data/lsun/cat_train.txt", data_root="data/lsun/cats", **kwargs)
87
+
88
+
89
+ class LSUNCatsValidation(LSUNBase):
90
+ def __init__(self, flip_p=0., **kwargs):
91
+ super().__init__(txt_file="data/lsun/cat_val.txt", data_root="data/lsun/cats",
92
+ flip_p=flip_p, **kwargs)
models/ldm/data/nerf_like.py ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch.utils.data import Dataset
2
+ import os
3
+ import json
4
+ import numpy as np
5
+ import torch
6
+ import imageio
7
+ import math
8
+ import cv2
9
+ from torchvision import transforms
10
+
11
+ def cartesian_to_spherical(xyz):
12
+ ptsnew = np.hstack((xyz, np.zeros(xyz.shape)))
13
+ xy = xyz[:,0]**2 + xyz[:,1]**2
14
+ z = np.sqrt(xy + xyz[:,2]**2)
15
+ theta = np.arctan2(np.sqrt(xy), xyz[:,2]) # for elevation angle defined from Z-axis down
16
+ #ptsnew[:,4] = np.arctan2(xyz[:,2], np.sqrt(xy)) # for elevation angle defined from XY-plane up
17
+ azimuth = np.arctan2(xyz[:,1], xyz[:,0])
18
+ return np.array([theta, azimuth, z])
19
+
20
+
21
+ def get_T(T_target, T_cond):
22
+ theta_cond, azimuth_cond, z_cond = cartesian_to_spherical(T_cond[None, :])
23
+ theta_target, azimuth_target, z_target = cartesian_to_spherical(T_target[None, :])
24
+
25
+ d_theta = theta_target - theta_cond
26
+ d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi)
27
+ d_z = z_target - z_cond
28
+
29
+ d_T = torch.tensor([d_theta.item(), math.sin(d_azimuth.item()), math.cos(d_azimuth.item()), d_z.item()])
30
+ return d_T
31
+
32
+ def get_spherical(T_target, T_cond):
33
+ theta_cond, azimuth_cond, z_cond = cartesian_to_spherical(T_cond[None, :])
34
+ theta_target, azimuth_target, z_target = cartesian_to_spherical(T_target[None, :])
35
+
36
+ d_theta = theta_target - theta_cond
37
+ d_azimuth = (azimuth_target - azimuth_cond) % (2 * math.pi)
38
+ d_z = z_target - z_cond
39
+
40
+ d_T = torch.tensor([math.degrees(d_theta.item()), math.degrees(d_azimuth.item()), d_z.item()])
41
+ return d_T
42
+
43
+ class RTMV(Dataset):
44
+ def __init__(self, root_dir='datasets/RTMV/google_scanned',\
45
+ first_K=64, resolution=256, load_target=False):
46
+ self.root_dir = root_dir
47
+ self.scene_list = sorted(next(os.walk(root_dir))[1])
48
+ self.resolution = resolution
49
+ self.first_K = first_K
50
+ self.load_target = load_target
51
+
52
+ def __len__(self):
53
+ return len(self.scene_list)
54
+
55
+ def __getitem__(self, idx):
56
+ scene_dir = os.path.join(self.root_dir, self.scene_list[idx])
57
+ with open(os.path.join(scene_dir, 'transforms.json'), "r") as f:
58
+ meta = json.load(f)
59
+ imgs = []
60
+ poses = []
61
+ for i_img in range(self.first_K):
62
+ meta_img = meta['frames'][i_img]
63
+
64
+ if i_img == 0 or self.load_target:
65
+ img_path = os.path.join(scene_dir, meta_img['file_path'])
66
+ img = imageio.imread(img_path)
67
+ img = cv2.resize(img, (self.resolution, self.resolution), interpolation = cv2.INTER_LINEAR)
68
+ imgs.append(img)
69
+
70
+ c2w = meta_img['transform_matrix']
71
+ poses.append(c2w)
72
+
73
+ imgs = (np.array(imgs) / 255.).astype(np.float32) # (RGBA) imgs
74
+ imgs = torch.tensor(self.blend_rgba(imgs)).permute(0, 3, 1, 2)
75
+ imgs = imgs * 2 - 1. # convert to stable diffusion range
76
+ poses = torch.tensor(np.array(poses).astype(np.float32))
77
+ return imgs, poses
78
+
79
+ def blend_rgba(self, img):
80
+ img = img[..., :3] * img[..., -1:] + (1. - img[..., -1:]) # blend A to RGB
81
+ return img
82
+
83
+
84
+ class GSO(Dataset):
85
+ def __init__(self, root_dir='datasets/GoogleScannedObjects',\
86
+ split='val', first_K=5, resolution=256, load_target=False, name='render_mvs'):
87
+ self.root_dir = root_dir
88
+ with open(os.path.join(root_dir, '%s.json' % split), "r") as f:
89
+ self.scene_list = json.load(f)
90
+ self.resolution = resolution
91
+ self.first_K = first_K
92
+ self.load_target = load_target
93
+ self.name = name
94
+
95
+ def __len__(self):
96
+ return len(self.scene_list)
97
+
98
+ def __getitem__(self, idx):
99
+ scene_dir = os.path.join(self.root_dir, self.scene_list[idx])
100
+ with open(os.path.join(scene_dir, 'transforms_%s.json' % self.name), "r") as f:
101
+ meta = json.load(f)
102
+ imgs = []
103
+ poses = []
104
+ for i_img in range(self.first_K):
105
+ meta_img = meta['frames'][i_img]
106
+
107
+ if i_img == 0 or self.load_target:
108
+ img_path = os.path.join(scene_dir, meta_img['file_path'])
109
+ img = imageio.imread(img_path)
110
+ img = cv2.resize(img, (self.resolution, self.resolution), interpolation = cv2.INTER_LINEAR)
111
+ imgs.append(img)
112
+
113
+ c2w = meta_img['transform_matrix']
114
+ poses.append(c2w)
115
+
116
+ imgs = (np.array(imgs) / 255.).astype(np.float32) # (RGBA) imgs
117
+ mask = imgs[:, :, :, -1]
118
+ imgs = torch.tensor(self.blend_rgba(imgs)).permute(0, 3, 1, 2)
119
+ imgs = imgs * 2 - 1. # convert to stable diffusion range
120
+ poses = torch.tensor(np.array(poses).astype(np.float32))
121
+ return imgs, poses
122
+
123
+ def blend_rgba(self, img):
124
+ img = img[..., :3] * img[..., -1:] + (1. - img[..., -1:]) # blend A to RGB
125
+ return img
126
+
127
+ class WILD(Dataset):
128
+ def __init__(self, root_dir='data/nerf_wild',\
129
+ first_K=33, resolution=256, load_target=False):
130
+ self.root_dir = root_dir
131
+ self.scene_list = sorted(next(os.walk(root_dir))[1])
132
+ self.resolution = resolution
133
+ self.first_K = first_K
134
+ self.load_target = load_target
135
+
136
+ def __len__(self):
137
+ return len(self.scene_list)
138
+
139
+ def __getitem__(self, idx):
140
+ scene_dir = os.path.join(self.root_dir, self.scene_list[idx])
141
+ with open(os.path.join(scene_dir, 'transforms_train.json'), "r") as f:
142
+ meta = json.load(f)
143
+ imgs = []
144
+ poses = []
145
+ for i_img in range(self.first_K):
146
+ meta_img = meta['frames'][i_img]
147
+
148
+ if i_img == 0 or self.load_target:
149
+ img_path = os.path.join(scene_dir, meta_img['file_path'])
150
+ img = imageio.imread(img_path + '.png')
151
+ img = cv2.resize(img, (self.resolution, self.resolution), interpolation = cv2.INTER_LINEAR)
152
+ imgs.append(img)
153
+
154
+ c2w = meta_img['transform_matrix']
155
+ poses.append(c2w)
156
+
157
+ imgs = (np.array(imgs) / 255.).astype(np.float32) # (RGBA) imgs
158
+ imgs = torch.tensor(self.blend_rgba(imgs)).permute(0, 3, 1, 2)
159
+ imgs = imgs * 2 - 1. # convert to stable diffusion range
160
+ poses = torch.tensor(np.array(poses).astype(np.float32))
161
+ return imgs, poses
162
+
163
+ def blend_rgba(self, img):
164
+ img = img[..., :3] * img[..., -1:] + (1. - img[..., -1:]) # blend A to RGB
165
+ return img
models/ldm/data/objaverse_rendered.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from tqdm import tqdm
2
+ import os
3
+ import objaverse
4
+ import random
5
+ import numpy as np
6
+ def get_rendered_objaverse_list_v0(data_dir, target_name, exr, **kargs):
7
+ "This function is to fast obtain unfinined objaverse rendering images"
8
+ image_list_cache_path = kargs["image_list_cache_path"]
9
+ if os.path.exists(image_list_cache_path):
10
+ return np.load(image_list_cache_path)["image_list"].tolist()
11
+ random.seed(7564)
12
+ uids = objaverse.load_uids()
13
+ random.shuffle(uids)
14
+
15
+ obj_starts = kargs["obj_starts"]
16
+ obj_ends = kargs["obj_ends"]
17
+ num_envs = kargs["num_envs"]
18
+ num_imgs = kargs["num_imgs"]
19
+
20
+
21
+ selected_uids = []
22
+ for _start, _end in zip(obj_starts, obj_ends):
23
+ selected_uids += uids[_start:_end]
24
+
25
+ all_imgs = []
26
+
27
+ envpaths_all = os.listdir(os.path.join(data_dir, selected_uids[0]))
28
+ envpaths_raw = [_env for _env in envpaths_all if not ".txt" in _env]
29
+
30
+ for _uid in tqdm(selected_uids):
31
+ random.shuffle(envpaths_raw)
32
+ envpaths = envpaths_raw[:num_envs]
33
+ if not os.path.exists(os.path.join(data_dir, _uid)):
34
+ print(f"WARNING NONE EXIST OBJECT {os.path.join(data_dir, _uid)}")
35
+ continue
36
+ for _env in envpaths:
37
+ if not os.path.exists(os.path.join(data_dir, _uid, _env)):
38
+ print(f"WARNING NONE EXIST ENV {os.path.join(data_dir, _uid, _env)}")
39
+ continue
40
+ img_ids = list(range(int(len(os.listdir(os.path.join(data_dir, _uid, _env))) // 7)))
41
+ random.shuffle(img_ids)
42
+ img_ids = img_ids[:num_imgs]
43
+
44
+ for _img_ids in img_ids:
45
+ if not os.path.exists(os.path.join(data_dir, _uid, _env, f"{_img_ids}-{target_name}0001.{exr}")):
46
+ print(f"WARNING NONE EXIST IMAGE {os.path.join(data_dir, _uid, _env, f'{_img_ids}-{target_name}0001.{exr}')}")
47
+ continue
48
+ all_imgs += [os.path.join(data_dir, _uid, _env, f"{_img_ids}-{target_name}0001.{exr}")]
49
+
50
+ np.savez(image_list_cache_path, image_list=all_imgs)
51
+ return all_imgs
52
+
53
+ if __name__ == "__main__":
54
+ all_imgs = get_rendered_objaverse_list_v0("/home/chenxi/code/material-diffusion/data/objaverse_rendering/samll-dataset", "albedo", "png",
55
+ obj_starts=[20], obj_ends=[80], num_envs=100, num_imgs=1)
56
+
57
+ print(len(all_imgs), all_imgs[:10])
58
+ for img in all_imgs[:10]:
59
+ print(img, os.path.exists(img))
models/ldm/data/simple.py ADDED
@@ -0,0 +1,567 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import sys
3
+ sys.path.insert(1, '.')
4
+ from typing import Dict
5
+ import webdataset as wds
6
+ import numpy as np
7
+ from omegaconf import DictConfig, ListConfig
8
+ import torch
9
+ from torch.utils.data import Dataset
10
+ from pathlib import Path
11
+ import json
12
+ from PIL import Image
13
+ from torchvision import transforms
14
+ import torchvision
15
+ from einops import rearrange
16
+ from ldm.util import instantiate_from_config
17
+ from datasets import load_dataset
18
+ import pytorch_lightning as pl
19
+ import copy
20
+ import csv
21
+ import cv2
22
+ import random
23
+ import matplotlib.pyplot as plt
24
+ from torch.utils.data import DataLoader
25
+ import json
26
+ import os, sys
27
+ import webdataset as wds
28
+ import math
29
+ from torch.utils.data.distributed import DistributedSampler
30
+ import glob
31
+ import pickle
32
+ from ldm.data.objaverse_rendered import get_rendered_objaverse_list_v0
33
+ from ldm.data.decoder import ObjaverseDataDecoder, ObjaverseDecoerWDS, nodesplitter
34
+
35
+ from loguru import logger
36
+ from torch import distributed as dist
37
+ from tqdm import tqdm
38
+ from multiprocessing.pool import ThreadPool
39
+
40
+
41
+ # Some hacky things to make experimentation easier
42
+ def make_transform_multi_folder_data(paths, caption_files=None, **kwargs):
43
+ ds = make_multi_folder_data(paths, caption_files, **kwargs)
44
+ return TransformDataset(ds)
45
+
46
+ def make_nfp_data(base_path):
47
+ dirs = list(Path(base_path).glob("*/"))
48
+ print(f"Found {len(dirs)} folders")
49
+ print(dirs)
50
+ tforms = [transforms.Resize(512), transforms.CenterCrop(512)]
51
+ datasets = [NfpDataset(x, image_transforms=copy.copy(tforms), default_caption="A view from a train window") for x in dirs]
52
+ return torch.utils.data.ConcatDataset(datasets)
53
+
54
+
55
+ class VideoDataset(Dataset):
56
+ def __init__(self, root_dir, image_transforms, caption_file, offset=8, n=2):
57
+ self.root_dir = Path(root_dir)
58
+ self.caption_file = caption_file
59
+ self.n = n
60
+ ext = "mp4"
61
+ self.paths = sorted(list(self.root_dir.rglob(f"*.{ext}")))
62
+ self.offset = offset
63
+
64
+ if isinstance(image_transforms, ListConfig):
65
+ image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
66
+ image_transforms.extend([transforms.ToTensor(),
67
+ transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
68
+ image_transforms = transforms.Compose(image_transforms)
69
+ self.tform = image_transforms
70
+ with open(self.caption_file) as f:
71
+ reader = csv.reader(f)
72
+ rows = [row for row in reader]
73
+ self.captions = dict(rows)
74
+
75
+ def __len__(self):
76
+ return len(self.paths)
77
+
78
+ def __getitem__(self, index):
79
+ for i in range(10):
80
+ try:
81
+ return self._load_sample(index)
82
+ except Exception:
83
+ # Not really good enough but...
84
+ print("uh oh")
85
+
86
+ def _load_sample(self, index):
87
+ n = self.n
88
+ filename = self.paths[index]
89
+ min_frame = 2*self.offset + 2
90
+ vid = cv2.VideoCapture(str(filename))
91
+ max_frames = int(vid.get(cv2.CAP_PROP_FRAME_COUNT))
92
+ curr_frame_n = random.randint(min_frame, max_frames)
93
+ vid.set(cv2.CAP_PROP_POS_FRAMES,curr_frame_n)
94
+ _, curr_frame = vid.read()
95
+
96
+ prev_frames = []
97
+ for i in range(n):
98
+ prev_frame_n = curr_frame_n - (i+1)*self.offset
99
+ vid.set(cv2.CAP_PROP_POS_FRAMES,prev_frame_n)
100
+ _, prev_frame = vid.read()
101
+ prev_frame = self.tform(Image.fromarray(prev_frame[...,::-1]))
102
+ prev_frames.append(prev_frame)
103
+
104
+ vid.release()
105
+ caption = self.captions[filename.name]
106
+ data = {
107
+ "image": self.tform(Image.fromarray(curr_frame[...,::-1])),
108
+ "prev": torch.cat(prev_frames, dim=-1),
109
+ "txt": caption
110
+ }
111
+ return data
112
+
113
+ # end hacky things
114
+
115
+
116
+ def make_tranforms(image_transforms):
117
+ # if isinstance(image_transforms, ListConfig):
118
+ # image_transforms = [instantiate_from_config(tt) for tt in image_transforms]
119
+ image_transforms = []
120
+ image_transforms.extend([transforms.ToTensor(),
121
+ transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
122
+ image_transforms = transforms.Compose(image_transforms)
123
+ return image_transforms
124
+
125
+
126
+ def make_multi_folder_data(paths, caption_files=None, **kwargs):
127
+ """Make a concat dataset from multiple folders
128
+ Don't suport captions yet
129
+
130
+ If paths is a list, that's ok, if it's a Dict interpret it as:
131
+ k=folder v=n_times to repeat that
132
+ """
133
+ list_of_paths = []
134
+ if isinstance(paths, (Dict, DictConfig)):
135
+ assert caption_files is None, \
136
+ "Caption files not yet supported for repeats"
137
+ for folder_path, repeats in paths.items():
138
+ list_of_paths.extend([folder_path]*repeats)
139
+ paths = list_of_paths
140
+
141
+ if caption_files is not None:
142
+ datasets = [FolderData(p, caption_file=c, **kwargs) for (p, c) in zip(paths, caption_files)]
143
+ else:
144
+ datasets = [FolderData(p, **kwargs) for p in paths]
145
+ return torch.utils.data.ConcatDataset(datasets)
146
+
147
+
148
+
149
+ class NfpDataset(Dataset):
150
+ def __init__(self,
151
+ root_dir,
152
+ image_transforms=[],
153
+ ext="jpg",
154
+ default_caption="",
155
+ ) -> None:
156
+ """assume sequential frames and a deterministic transform"""
157
+
158
+ self.root_dir = Path(root_dir)
159
+ self.default_caption = default_caption
160
+
161
+ self.paths = sorted(list(self.root_dir.rglob(f"*.{ext}")))
162
+ self.tform = make_tranforms(image_transforms)
163
+
164
+ def __len__(self):
165
+ return len(self.paths) - 1
166
+
167
+
168
+ def __getitem__(self, index):
169
+ prev = self.paths[index]
170
+ curr = self.paths[index+1]
171
+ data = {}
172
+ data["image"] = self._load_im(curr)
173
+ data["prev"] = self._load_im(prev)
174
+ data["txt"] = self.default_caption
175
+ return data
176
+
177
+ def _load_im(self, filename):
178
+ im = Image.open(filename).convert("RGB")
179
+ return self.tform(im)
180
+
181
+ class ObjaverseDataModuleFromConfig(pl.LightningDataModule):
182
+ def __init__(self, root_dir, batch_size, train=None, validation=None,
183
+ test=None, num_workers=4, objaverse_data_list=None, ext="png",
184
+ target_name="albedo", use_wds=True, tar_config=None, **kwargs):
185
+ super().__init__(self)
186
+ self.root_dir = root_dir
187
+ self.batch_size = batch_size
188
+ self.num_workers = num_workers
189
+ self.kwargs = kwargs
190
+ self.tar_config = tar_config
191
+ self.use_wds = use_wds
192
+
193
+ if train is not None:
194
+ dataset_config = train
195
+ if validation is not None:
196
+ dataset_config = validation
197
+
198
+
199
+ image_transforms = [transforms.ToTensor(),
200
+ transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))]
201
+ image_transforms = torchvision.transforms.Compose(image_transforms)
202
+ self.image_transforms = {
203
+ "size": dataset_config.image_transforms.size,
204
+ "totensor": image_transforms
205
+ }
206
+
207
+ self.target_name = target_name
208
+ self.objaverse_data_list = objaverse_data_list
209
+ self.ext = ext
210
+
211
+ def naive_setup(self):
212
+ # get object data list
213
+ if self.objaverse_data_list is None or \
214
+ self.objaverse_data_list["image_list_cache_path"] == "None":
215
+ # This is too slow..
216
+ self.paths = sorted(list(Path(self.root_dir).rglob(f"*{self.target_name}*.{self.ext}")))
217
+ if len(self.paths) == 0:
218
+ # colmap format
219
+ self.paths = sorted(list(Path(self.root_dir).rglob(f"*images_train/*.*")))
220
+ else:
221
+ self.paths = get_rendered_objaverse_list_v0(self.root_dir, self.target_name, self.ext, **self.objaverse_data_list)
222
+ random.shuffle(self.paths)
223
+ # train val split
224
+ total_objects = len(self.paths)
225
+ self.paths_val = self.paths[math.floor(total_objects / 100. * 99.):] # used last 1% as validation
226
+ self.paths_train = self.paths[:math.floor(total_objects / 100. * 99.)] # used first 99% as training
227
+ if self.rank == 0:
228
+ print('============= length of dataset %d =============' % len(self.paths))
229
+ print('============= length of training dataset %d =============' % len(self.paths_train))
230
+ print('============= length of Validation dataset %d =============' % len(self.paths_val))
231
+
232
+ # Split into each GPU
233
+ self.paths_train = self._get_local_split(self.paths_train, self.world_size, self.rank)
234
+ logger.info(
235
+ f"[rank {self.rank}]: {len(self.paths_train)} images assigned."
236
+ )
237
+
238
+ def _get_tar_length(self, tar_list, img_per_obj):
239
+ dataset_size = 0
240
+ for _name in tar_list:
241
+ num_obj = int(_name.rsplit("_num_")[1].rsplit(".")[0])
242
+ dataset_size += num_obj * img_per_obj
243
+ return dataset_size
244
+
245
+ def webdataset_setup(self, list_dir, tar_dir, img_per_obj, max_tars=None):
246
+ # read data list and calculate size
247
+ tar_name_list = sorted(os.listdir(list_dir))
248
+ if not max_tars is None:
249
+ # for debugging on small scale data
250
+ tar_name_list = tar_name_list[:max_tars]
251
+ total_tars = len(tar_name_list)
252
+ # random shuffle
253
+ random.shuffle(tar_name_list)
254
+ print(f"Rank {self.rank} shuffle: {tar_name_list}")
255
+ # train test split
256
+ self.test_tars = tar_name_list[math.floor(total_tars / 100. * 99.):]
257
+ # make sure each node has one tar
258
+ if len(self.test_tars) < self.world_size:
259
+ self.test_tars += [self.test_tars[0]]*(self.world_size-len(self.test_tars))
260
+
261
+ self.train_tars = tar_name_list[:math.floor(total_tars / 100. * 99.)]
262
+
263
+ # training tar truncation
264
+ total_workers = self.num_workers * self.world_size
265
+ num_tars_train = (len(self.train_tars) // total_workers) * total_workers
266
+ if num_tars_train != len(self.train_tars):
267
+ print(f"[WARNING] Total train tars: {len(self.train_tars)}, truncated: {len(self.train_tars)-num_tars_train}, remainnig: {num_tars_train}, total workers: {total_workers}")
268
+
269
+ self.test_length = self._get_tar_length(self.test_tars, img_per_obj)
270
+ self.train_length = self._get_tar_length(self.train_tars, img_per_obj)
271
+
272
+ # name replace
273
+ test_tars = [_name.rsplit("_num")[0]+".tar" for _name in self.test_tars]
274
+ self.test_tars = [os.path.join(tar_dir, _name) for _name in test_tars]
275
+
276
+ train_tars = [_name.rsplit("_num")[0]+".tar" for _name in self.train_tars]
277
+ self.train_tars = [os.path.join(tar_dir, _name) for _name in train_tars]
278
+
279
+ if self.rank == 0:
280
+ print('============= length of dataset %d =============' % (self.test_length+self.train_length))
281
+ print('============= length of training dataset %d =============' % (self.train_length))
282
+ print('============= length of Validation dataset %d =============' % (self.test_length))
283
+
284
+ def setup(self, stage=None):
285
+ try:
286
+ self.world_size = dist.get_world_size()
287
+ self.rank = dist.get_rank()
288
+ except:
289
+ self.world_size = 1
290
+ self.rank = 0
291
+
292
+ if self.rank == 0:
293
+ print("#### Data ####")
294
+
295
+ if self.use_wds:
296
+ self.webdataset_setup(**self.tar_config)
297
+ else:
298
+ self.naive_setup()
299
+
300
+ def _get_local_split(self, items: list, world_size: int, rank: int, seed: int = 6):
301
+ """The local rank only loads a split of the dataset."""
302
+ n_items = len(items)
303
+ items_permute = np.random.RandomState(seed).permutation(items)
304
+ if n_items % world_size == 0:
305
+ padded_items = items_permute
306
+ else:
307
+ padding = np.random.RandomState(seed).choice(
308
+ items, world_size - (n_items % world_size), replace=True
309
+ )
310
+ padded_items = np.concatenate([items_permute, padding])
311
+ assert (
312
+ len(padded_items) % world_size == 0
313
+ ), f"len(padded_items): {len(padded_items)}; world_size: {world_size}; len(padding): {len(padding)}"
314
+ n_per_rank = len(padded_items) // world_size
315
+ local_items = padded_items[n_per_rank * rank : n_per_rank * (rank + 1)]
316
+
317
+ return local_items
318
+
319
+ def train_dataloader(self):
320
+ if self.use_wds:
321
+ loader = self.train_dataloader_wds()
322
+ else:
323
+ loader = self.train_dataloader_naive()
324
+ return loader
325
+
326
+ def val_dataloader(self):
327
+ if self.use_wds:
328
+ loader = self.val_dataloader_wds()
329
+ else:
330
+ loader = self.val_dataloader_naive()
331
+ return loader
332
+
333
+ def train_dataloader_naive(self):
334
+ dataset = ObjaverseData(root_dir=self.root_dir, \
335
+ image_transforms=self.image_transforms,
336
+ image_list = self.paths_train, target_name=self.target_name,
337
+ **self.kwargs)
338
+ return wds.WebLoader(dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=True)
339
+
340
+ def val_dataloader_naive(self):
341
+ dataset = ObjaverseData(root_dir=self.root_dir, \
342
+ image_transforms=self.image_transforms,
343
+ image_list = self.paths_val, target_name=self.target_name,
344
+ **self.kwargs)
345
+ return wds.WebLoader(dataset, batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False)
346
+
347
+
348
+ def train_dataloader_wds(self):
349
+ decoder = ObjaverseDecoerWDS(root_dir=self.root_dir, \
350
+ image_transforms=self.image_transforms,
351
+ image_list = None, target_name=self.target_name,
352
+ **self.kwargs)
353
+
354
+ worker_batch = self.batch_size
355
+ epoch_length = self.train_length // worker_batch // self.num_workers // self.world_size
356
+ dataset = (wds.WebDataset(self.train_tars,
357
+ shardshuffle=min(1000, len(self.train_tars)),
358
+ nodesplitter=wds.shardlists.split_by_node)
359
+ .shuffle(5000, initial=1000)
360
+ .map(decoder.process_sample)
361
+ # .map(decoder.dict2tuple)
362
+ .batched(worker_batch, partial=False)
363
+ # .map(decoder.tuple2dict)
364
+ .map(decoder.batch_reordering)
365
+ .with_epoch(epoch_length)
366
+ .with_length(epoch_length)
367
+ )
368
+ loader = (wds.WebLoader(dataset, batch_size=None, num_workers=self.num_workers, shuffle=False)
369
+ # .unbatched()
370
+ # .shuffle(1000)
371
+ # .batched(self.batch_size)
372
+ # .map(decoder.tuple2dict)
373
+ )
374
+
375
+ print(f"# Training loader length for single worker {epoch_length} with {self.num_workers} workers")
376
+
377
+ return loader
378
+
379
+ def val_dataloader_wds(self):
380
+ decoder = ObjaverseDecoerWDS(root_dir=self.root_dir, \
381
+ image_transforms=self.image_transforms,
382
+ image_list = None, target_name=self.target_name,
383
+ **self.kwargs)
384
+
385
+ # adjust worker number, as test has much much fewer tars
386
+ val_workers = min(self.num_workers, len(self.test_tars) // self.world_size)
387
+ epoch_length = max(self.test_length // self.batch_size // val_workers // self.world_size, 1)
388
+ dataset = (wds.WebDataset(self.test_tars,
389
+ shardshuffle=min(1000, len(self.test_tars)),
390
+ handler=wds.ignore_and_continue,
391
+ nodesplitter=wds.shardlists.split_by_node)
392
+ .shuffle(1000)
393
+ .map(decoder.process_sample)
394
+ # .map(decoder.dict2tuple)
395
+ .batched(self.batch_size, partial=False)
396
+ .with_epoch(epoch_length)
397
+ .with_length(epoch_length)
398
+ )
399
+ loader = (wds.WebLoader(dataset, batch_size=None, num_workers=val_workers, shuffle=False)
400
+ .unbatched()
401
+ .shuffle(1000)
402
+ .batched(self.batch_size)
403
+ # .map(decoder.tuple2dict)
404
+ .map(decoder.batch_reordering)
405
+ )
406
+
407
+ print(f"# Validation loader length for single worker {epoch_length} with {val_workers} workers")
408
+
409
+ return loader
410
+
411
+ def test_dataloader(self):
412
+ # testing will use all given data
413
+ return wds.WebLoader(ObjaverseData(root_dir=self.root_dir, test=True,
414
+ image_transforms=self.image_transforms,
415
+ image_list = self.paths, target_name=self.target_name,
416
+ **self.kwargs),
417
+ batch_size=32, num_workers=self.num_workers, shuffle=False,
418
+ )
419
+
420
+
421
+ class ObjaverseData(ObjaverseDataDecoder, Dataset):
422
+ def __init__(self,
423
+ root_dir='.objaverse/hf-objaverse-v1/views',
424
+ image_list=None,
425
+ threads=64,
426
+ **kargs
427
+ ) -> None:
428
+ """Create a dataset from blender rendering results.
429
+ If you pass in a root directory it will be searched for images
430
+ ending in ext (ext can be a list)
431
+ """
432
+ self.paths = image_list
433
+ self.root_dir = Path(root_dir)
434
+ ObjaverseDataDecoder.__init__(self, **kargs)
435
+ # pre-load data
436
+ print(f"Data pre loading start with {threads}...")
437
+ self.all_target_im = np.zeros((len(self.paths), self.img_size, self.img_size, 3), dtype=np.uint8) + 0
438
+ self.all_cond_im = np.zeros((len(self.paths), self.img_size, self.img_size, 3), dtype=np.uint8) + 0
439
+ self.all_filename = ["empty"] * len(self.paths)
440
+ if self.condition_name == "normal":
441
+ self.all_normal_img = np.zeros((len(self.paths), self.img_size, self.img_size, 3), dtype=np.uint8) + 0
442
+ self.all_crop_idx = np.zeros((len(self.paths), 6), dtype=int) + 0
443
+
444
+ print("Array allocated..")
445
+
446
+ def parallel_load(index):
447
+ pbar.update(1)
448
+ self.preload_item(index)
449
+
450
+ pbar = tqdm(total=len(self.paths))
451
+ with ThreadPool(threads) as pool:
452
+ pool.map(parallel_load, range(len(self.paths)))
453
+ pool.close()
454
+ pool.join()
455
+
456
+ print("Data pre loading done...")
457
+
458
+ def __len__(self):
459
+ return len(self.paths)
460
+
461
+ def load_mask(self, mask_filename, cond_im):
462
+ # auto image file extention
463
+ glob_files = glob.glob(mask_filename.rsplit(".", 1)[0] + ".*")
464
+ if len(glob_files) == 0:
465
+ print("Warning: no mask image find")
466
+ img_mask = np.ones_like(cond_im)
467
+
468
+ if cond_im.shape[-1] == 4:
469
+ print("Use image mask")
470
+ img_mask = img_mask * cond_im[:, :, -1:]
471
+ elif len(glob_files) == 1:
472
+ img_mask = np.array(self.normalized_read(glob_files[0]))
473
+ else:
474
+ raise NotImplementedError("Too many mask images found! {}")
475
+ return img_mask
476
+
477
+ def preload_item(self, index):
478
+ path = self.paths[index]
479
+ filename = os.path.join(path)
480
+ filename, condition_filename, \
481
+ mask_filename, normal_condition_filename, filename_targets = self.path_parsing(filename)
482
+
483
+ # get file streams
484
+ if filename_targets is None:
485
+ filename_read = filename
486
+ else:
487
+ filename_read = filename_targets
488
+
489
+ # image reading
490
+ target_im, cond_im, normal_img = self.read_images(filename_read,
491
+ condition_filename, normal_condition_filename)
492
+
493
+ # mask reading
494
+ img_mask = self.load_mask(mask_filename, cond_im)
495
+
496
+ # post processing
497
+ target_im, cond_im, normal_img, crop_idx = self.image_post_processing(img_mask, target_im, cond_im, normal_img)
498
+ if self.test:
499
+ # crop out valid_mask
500
+ self.all_crop_idx[index] = crop_idx
501
+
502
+ # put results
503
+ self.all_target_im[index] = target_im
504
+ self.all_cond_im[index] = cond_im
505
+ self.all_filename[index] = filename
506
+ if self.condition_name == "normal":
507
+ self.all_normal_img[index] = normal_img
508
+
509
+ def get_camera(self, input_filename):
510
+ camera_file = input_filename.replace(f'{self.target_name}0001', \
511
+ 'camera').rsplit(".")[0] + ".pkl"
512
+ cam_dir, cam_name = camera_file.rsplit("/", 1)
513
+ cam_name = f"{cam_name:>15}"
514
+ camera_file = os.path.join(cam_dir, cam_name)
515
+ cam = pickle.load(open(camera_file, 'rb'))
516
+ return cam
517
+
518
+
519
+ def __getitem__(self, index):
520
+ target_im = self.process_im(self.all_target_im[index])
521
+ cond_img = self.process_im(self.all_cond_im[index])
522
+ filename = self.all_filename[index]
523
+ normal_img = self.process_im(self.all_normal_img[index]) \
524
+ if self.condition_name == "normal" \
525
+ else None
526
+
527
+ sample = self.parse_item(target_im, cond_img, normal_img, filename)
528
+ if self.test:
529
+ sample["crop_idx"] = self.all_crop_idx[index]
530
+ return sample
531
+
532
+
533
+ if __name__ == "__main__":
534
+ import pyhocon
535
+
536
+ class DictAsMember(dict):
537
+ def __getattr__(self, name):
538
+ value = self[name]
539
+ if isinstance(value, dict):
540
+ value = DictAsMember(value)
541
+ return value
542
+
543
+ def ConfigAsMember(config):
544
+ config_dict = DictAsMember(config)
545
+ for key in config_dict.keys():
546
+ if isinstance(config_dict[key], pyhocon.config_tree.ConfigTree):
547
+ config_dict[key] = ConfigAsMember(config_dict[key])
548
+ return config_dict
549
+
550
+ train_config = DictAsMember({
551
+ "validation": False,
552
+ "image_transforms": {"size": 256}
553
+ })
554
+ val_config = DictAsMember({
555
+ "validation": True,
556
+ "image_transforms": {"size": 256}
557
+ })
558
+ objaverse_data_list = DictAsMember({
559
+ "image_list_cache_path": "image_lists/half_400000_image_list.npz",
560
+ })
561
+ data_module = ObjaverseDataModuleFromConfig(root_dir='/mnt/volumes/perception/hujunkang/codes/renders/material-diffusion/data/objaverse_rendering',
562
+ batch_size=4, train=train_config, validation=val_config,
563
+ test=None, num_workers=1, objaverse_data_list=objaverse_data_list, ext="png",
564
+ target_name="albedo", use_wds=False, tar_config=None)
565
+
566
+ data_module.setup()
567
+ train_dataloader_naive = data_module.train_dataloader_naive()
models/ldm/extras.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+ from omegaconf import OmegaConf
3
+ import torch
4
+ from ldm.util import instantiate_from_config
5
+ import logging
6
+ from contextlib import contextmanager
7
+
8
+ from contextlib import contextmanager
9
+ import logging
10
+
11
+ @contextmanager
12
+ def all_logging_disabled(highest_level=logging.CRITICAL):
13
+ """
14
+ A context manager that will prevent any logging messages
15
+ triggered during the body from being processed.
16
+
17
+ :param highest_level: the maximum logging level in use.
18
+ This would only need to be changed if a custom level greater than CRITICAL
19
+ is defined.
20
+
21
+ https://gist.github.com/simon-weber/7853144
22
+ """
23
+ # two kind-of hacks here:
24
+ # * can't get the highest logging level in effect => delegate to the user
25
+ # * can't get the current module-level override => use an undocumented
26
+ # (but non-private!) interface
27
+
28
+ previous_level = logging.root.manager.disable
29
+
30
+ logging.disable(highest_level)
31
+
32
+ try:
33
+ yield
34
+ finally:
35
+ logging.disable(previous_level)
36
+
37
+ def load_training_dir(train_dir, device, epoch="last"):
38
+ """Load a checkpoint and config from training directory"""
39
+ train_dir = Path(train_dir)
40
+ ckpt = list(train_dir.rglob(f"*{epoch}.ckpt"))
41
+ assert len(ckpt) == 1, f"found {len(ckpt)} matching ckpt files"
42
+ config = list(train_dir.rglob(f"*-project.yaml"))
43
+ assert len(ckpt) > 0, f"didn't find any config in {train_dir}"
44
+ if len(config) > 1:
45
+ print(f"found {len(config)} matching config files")
46
+ config = sorted(config)[-1]
47
+ print(f"selecting {config}")
48
+ else:
49
+ config = config[0]
50
+
51
+
52
+ config = OmegaConf.load(config)
53
+ return load_model_from_config(config, ckpt[0], device)
54
+
55
+ def load_model_from_config(config, ckpt, device="cpu", verbose=False):
56
+ """Loads a model from config and a ckpt
57
+ if config is a path will use omegaconf to load
58
+ """
59
+ if isinstance(config, (str, Path)):
60
+ config = OmegaConf.load(config)
61
+
62
+ with all_logging_disabled():
63
+ print(f"Loading model from {ckpt}")
64
+ pl_sd = torch.load(ckpt, map_location="cpu")
65
+ global_step = pl_sd["global_step"]
66
+ sd = pl_sd["state_dict"]
67
+ model = instantiate_from_config(config.model)
68
+ m, u = model.load_state_dict(sd, strict=False)
69
+ if len(m) > 0 and verbose:
70
+ print("missing keys:")
71
+ print(m)
72
+ if len(u) > 0 and verbose:
73
+ print("unexpected keys:")
74
+ model.to(device)
75
+ model.eval()
76
+ model.cond_stage_model.device = device
77
+ return model
models/ldm/guidance.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Tuple
2
+ from scipy import interpolate
3
+ import numpy as np
4
+ import torch
5
+ import matplotlib.pyplot as plt
6
+ from IPython.display import clear_output
7
+ import abc
8
+
9
+
10
+ class GuideModel(torch.nn.Module, abc.ABC):
11
+ def __init__(self) -> None:
12
+ super().__init__()
13
+
14
+ @abc.abstractmethod
15
+ def preprocess(self, x_img):
16
+ pass
17
+
18
+ @abc.abstractmethod
19
+ def compute_loss(self, inp):
20
+ pass
21
+
22
+
23
+ class Guider(torch.nn.Module):
24
+ def __init__(self, sampler, guide_model, scale=1.0, verbose=False):
25
+ """Apply classifier guidance
26
+
27
+ Specify a guidance scale as either a scalar
28
+ Or a schedule as a list of tuples t = 0->1 and scale, e.g.
29
+ [(0, 10), (0.5, 20), (1, 50)]
30
+ """
31
+ super().__init__()
32
+ self.sampler = sampler
33
+ self.index = 0
34
+ self.show = verbose
35
+ self.guide_model = guide_model
36
+ self.history = []
37
+
38
+ if isinstance(scale, (Tuple, List)):
39
+ times = np.array([x[0] for x in scale])
40
+ values = np.array([x[1] for x in scale])
41
+ self.scale_schedule = {"times": times, "values": values}
42
+ else:
43
+ self.scale_schedule = float(scale)
44
+
45
+ self.ddim_timesteps = sampler.ddim_timesteps
46
+ self.ddpm_num_timesteps = sampler.ddpm_num_timesteps
47
+
48
+
49
+ def get_scales(self):
50
+ if isinstance(self.scale_schedule, float):
51
+ return len(self.ddim_timesteps)*[self.scale_schedule]
52
+
53
+ interpolater = interpolate.interp1d(self.scale_schedule["times"], self.scale_schedule["values"])
54
+ fractional_steps = np.array(self.ddim_timesteps)/self.ddpm_num_timesteps
55
+ return interpolater(fractional_steps)
56
+
57
+ def modify_score(self, model, e_t, x, t, c):
58
+
59
+ # TODO look up index by t
60
+ scale = self.get_scales()[self.index]
61
+
62
+ if (scale == 0):
63
+ return e_t
64
+
65
+ sqrt_1ma = self.sampler.ddim_sqrt_one_minus_alphas[self.index].to(x.device)
66
+ with torch.enable_grad():
67
+ x_in = x.detach().requires_grad_(True)
68
+ pred_x0 = model.predict_start_from_noise(x_in, t=t, noise=e_t)
69
+ x_img = model.first_stage_model.decode((1/0.18215)*pred_x0)
70
+
71
+ inp = self.guide_model.preprocess(x_img)
72
+ loss = self.guide_model.compute_loss(inp)
73
+ grads = torch.autograd.grad(loss.sum(), x_in)[0]
74
+ correction = grads * scale
75
+
76
+ if self.show:
77
+ clear_output(wait=True)
78
+ print(loss.item(), scale, correction.abs().max().item(), e_t.abs().max().item())
79
+ self.history.append([loss.item(), scale, correction.min().item(), correction.max().item()])
80
+ plt.imshow((inp[0].detach().permute(1,2,0).clamp(-1,1).cpu()+1)/2)
81
+ plt.axis('off')
82
+ plt.show()
83
+ plt.imshow(correction[0][0].detach().cpu())
84
+ plt.axis('off')
85
+ plt.show()
86
+
87
+
88
+ e_t_mod = e_t - sqrt_1ma*correction
89
+ if self.show:
90
+ fig, axs = plt.subplots(1, 3)
91
+ axs[0].imshow(e_t[0][0].detach().cpu(), vmin=-2, vmax=+2)
92
+ axs[1].imshow(e_t_mod[0][0].detach().cpu(), vmin=-2, vmax=+2)
93
+ axs[2].imshow(correction[0][0].detach().cpu(), vmin=-2, vmax=+2)
94
+ plt.show()
95
+ self.index += 1
96
+ return e_t_mod
models/ldm/lr_scheduler.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+
4
+ class LambdaWarmUpCosineScheduler:
5
+ """
6
+ note: use with a base_lr of 1.0
7
+ """
8
+ def __init__(self, warm_up_steps, lr_min, lr_max, lr_start, max_decay_steps, verbosity_interval=0):
9
+ self.lr_warm_up_steps = warm_up_steps
10
+ self.lr_start = lr_start
11
+ self.lr_min = lr_min
12
+ self.lr_max = lr_max
13
+ self.lr_max_decay_steps = max_decay_steps
14
+ self.last_lr = 0.
15
+ self.verbosity_interval = verbosity_interval
16
+
17
+ def schedule(self, n, **kwargs):
18
+ if self.verbosity_interval > 0:
19
+ if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_lr}")
20
+ if n < self.lr_warm_up_steps:
21
+ lr = (self.lr_max - self.lr_start) / self.lr_warm_up_steps * n + self.lr_start
22
+ self.last_lr = lr
23
+ return lr
24
+ else:
25
+ t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps)
26
+ t = min(t, 1.0)
27
+ lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * (
28
+ 1 + np.cos(t * np.pi))
29
+ self.last_lr = lr
30
+ return lr
31
+
32
+ def __call__(self, n, **kwargs):
33
+ return self.schedule(n,**kwargs)
34
+
35
+
36
+ class LambdaWarmUpCosineScheduler2:
37
+ """
38
+ supports repeated iterations, configurable via lists
39
+ note: use with a base_lr of 1.0.
40
+ """
41
+ def __init__(self, warm_up_steps, f_min, f_max, f_start, cycle_lengths, verbosity_interval=0):
42
+ assert len(warm_up_steps) == len(f_min) == len(f_max) == len(f_start) == len(cycle_lengths)
43
+ self.lr_warm_up_steps = warm_up_steps
44
+ self.f_start = f_start
45
+ self.f_min = f_min
46
+ self.f_max = f_max
47
+ self.cycle_lengths = cycle_lengths
48
+ self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths))
49
+ self.last_f = 0.
50
+ self.verbosity_interval = verbosity_interval
51
+
52
+ def find_in_interval(self, n):
53
+ interval = 0
54
+ for cl in self.cum_cycles[1:]:
55
+ if n <= cl:
56
+ return interval
57
+ interval += 1
58
+
59
+ def schedule(self, n, **kwargs):
60
+ cycle = self.find_in_interval(n)
61
+ n = n - self.cum_cycles[cycle]
62
+ if self.verbosity_interval > 0:
63
+ if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
64
+ f"current cycle {cycle}")
65
+ if n < self.lr_warm_up_steps[cycle]:
66
+ f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
67
+ self.last_f = f
68
+ return f
69
+ else:
70
+ t = (n - self.lr_warm_up_steps[cycle]) / (self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle])
71
+ t = min(t, 1.0)
72
+ f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * (
73
+ 1 + np.cos(t * np.pi))
74
+ self.last_f = f
75
+ return f
76
+
77
+ def __call__(self, n, **kwargs):
78
+ return self.schedule(n, **kwargs)
79
+
80
+
81
+ class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2):
82
+
83
+ def schedule(self, n, **kwargs):
84
+ cycle = self.find_in_interval(n)
85
+ n = n - self.cum_cycles[cycle]
86
+ if self.verbosity_interval > 0:
87
+ if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
88
+ f"current cycle {cycle}")
89
+
90
+ if n < self.lr_warm_up_steps[cycle]:
91
+ f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
92
+ self.last_f = f
93
+ return f
94
+ else:
95
+ f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (self.cycle_lengths[cycle] - n) / (self.cycle_lengths[cycle])
96
+ self.last_f = f
97
+ return f
98
+
models/ldm/models/autoencoder.py ADDED
@@ -0,0 +1,443 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import pytorch_lightning as pl
3
+ import torch.nn.functional as F
4
+ from contextlib import contextmanager
5
+
6
+ from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
7
+
8
+ from ldm.modules.diffusionmodules.model import Encoder, Decoder
9
+ from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
10
+
11
+ from ldm.util import instantiate_from_config
12
+
13
+
14
+ class VQModel(pl.LightningModule):
15
+ def __init__(self,
16
+ ddconfig,
17
+ lossconfig,
18
+ n_embed,
19
+ embed_dim,
20
+ ckpt_path=None,
21
+ ignore_keys=[],
22
+ image_key="image",
23
+ colorize_nlabels=None,
24
+ monitor=None,
25
+ batch_resize_range=None,
26
+ scheduler_config=None,
27
+ lr_g_factor=1.0,
28
+ remap=None,
29
+ sane_index_shape=False, # tell vector quantizer to return indices as bhw
30
+ use_ema=False
31
+ ):
32
+ super().__init__()
33
+ self.embed_dim = embed_dim
34
+ self.n_embed = n_embed
35
+ self.image_key = image_key
36
+ self.encoder = Encoder(**ddconfig)
37
+ self.decoder = Decoder(**ddconfig)
38
+ self.loss = instantiate_from_config(lossconfig)
39
+ self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
40
+ remap=remap,
41
+ sane_index_shape=sane_index_shape)
42
+ self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
43
+ self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
44
+ if colorize_nlabels is not None:
45
+ assert type(colorize_nlabels)==int
46
+ self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
47
+ if monitor is not None:
48
+ self.monitor = monitor
49
+ self.batch_resize_range = batch_resize_range
50
+ if self.batch_resize_range is not None:
51
+ print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.")
52
+
53
+ self.use_ema = use_ema
54
+ if self.use_ema:
55
+ self.model_ema = LitEma(self)
56
+ print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
57
+
58
+ if ckpt_path is not None:
59
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
60
+ self.scheduler_config = scheduler_config
61
+ self.lr_g_factor = lr_g_factor
62
+
63
+ @contextmanager
64
+ def ema_scope(self, context=None):
65
+ if self.use_ema:
66
+ self.model_ema.store(self.parameters())
67
+ self.model_ema.copy_to(self)
68
+ if context is not None:
69
+ print(f"{context}: Switched to EMA weights")
70
+ try:
71
+ yield None
72
+ finally:
73
+ if self.use_ema:
74
+ self.model_ema.restore(self.parameters())
75
+ if context is not None:
76
+ print(f"{context}: Restored training weights")
77
+
78
+ def init_from_ckpt(self, path, ignore_keys=list()):
79
+ sd = torch.load(path, map_location="cpu")["state_dict"]
80
+ keys = list(sd.keys())
81
+ for k in keys:
82
+ for ik in ignore_keys:
83
+ if k.startswith(ik):
84
+ print("Deleting key {} from state_dict.".format(k))
85
+ del sd[k]
86
+ missing, unexpected = self.load_state_dict(sd, strict=False)
87
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
88
+ if len(missing) > 0:
89
+ print(f"Missing Keys: {missing}")
90
+ print(f"Unexpected Keys: {unexpected}")
91
+
92
+ def on_train_batch_end(self, *args, **kwargs):
93
+ if self.use_ema:
94
+ self.model_ema(self)
95
+
96
+ def encode(self, x):
97
+ h = self.encoder(x)
98
+ h = self.quant_conv(h)
99
+ quant, emb_loss, info = self.quantize(h)
100
+ return quant, emb_loss, info
101
+
102
+ def encode_to_prequant(self, x):
103
+ h = self.encoder(x)
104
+ h = self.quant_conv(h)
105
+ return h
106
+
107
+ def decode(self, quant):
108
+ quant = self.post_quant_conv(quant)
109
+ dec = self.decoder(quant)
110
+ return dec
111
+
112
+ def decode_code(self, code_b):
113
+ quant_b = self.quantize.embed_code(code_b)
114
+ dec = self.decode(quant_b)
115
+ return dec
116
+
117
+ def forward(self, input, return_pred_indices=False):
118
+ quant, diff, (_,_,ind) = self.encode(input)
119
+ dec = self.decode(quant)
120
+ if return_pred_indices:
121
+ return dec, diff, ind
122
+ return dec, diff
123
+
124
+ def get_input(self, batch, k):
125
+ x = batch[k]
126
+ if len(x.shape) == 3:
127
+ x = x[..., None]
128
+ x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
129
+ if self.batch_resize_range is not None:
130
+ lower_size = self.batch_resize_range[0]
131
+ upper_size = self.batch_resize_range[1]
132
+ if self.global_step <= 4:
133
+ # do the first few batches with max size to avoid later oom
134
+ new_resize = upper_size
135
+ else:
136
+ new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16))
137
+ if new_resize != x.shape[2]:
138
+ x = F.interpolate(x, size=new_resize, mode="bicubic")
139
+ x = x.detach()
140
+ return x
141
+
142
+ def training_step(self, batch, batch_idx, optimizer_idx):
143
+ # https://github.com/pytorch/pytorch/issues/37142
144
+ # try not to fool the heuristics
145
+ x = self.get_input(batch, self.image_key)
146
+ xrec, qloss, ind = self(x, return_pred_indices=True)
147
+
148
+ if optimizer_idx == 0:
149
+ # autoencode
150
+ aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
151
+ last_layer=self.get_last_layer(), split="train",
152
+ predicted_indices=ind)
153
+
154
+ self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
155
+ return aeloss
156
+
157
+ if optimizer_idx == 1:
158
+ # discriminator
159
+ discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
160
+ last_layer=self.get_last_layer(), split="train")
161
+ self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
162
+ return discloss
163
+
164
+ def validation_step(self, batch, batch_idx):
165
+ log_dict = self._validation_step(batch, batch_idx)
166
+ with self.ema_scope():
167
+ log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
168
+ return log_dict
169
+
170
+ def _validation_step(self, batch, batch_idx, suffix=""):
171
+ x = self.get_input(batch, self.image_key)
172
+ xrec, qloss, ind = self(x, return_pred_indices=True)
173
+ aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0,
174
+ self.global_step,
175
+ last_layer=self.get_last_layer(),
176
+ split="val"+suffix,
177
+ predicted_indices=ind
178
+ )
179
+
180
+ discloss, log_dict_disc = self.loss(qloss, x, xrec, 1,
181
+ self.global_step,
182
+ last_layer=self.get_last_layer(),
183
+ split="val"+suffix,
184
+ predicted_indices=ind
185
+ )
186
+ rec_loss = log_dict_ae[f"val{suffix}/rec_loss"]
187
+ self.log(f"val{suffix}/rec_loss", rec_loss,
188
+ prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
189
+ self.log(f"val{suffix}/aeloss", aeloss,
190
+ prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
191
+ if version.parse(pl.__version__) >= version.parse('1.4.0'):
192
+ del log_dict_ae[f"val{suffix}/rec_loss"]
193
+ self.log_dict(log_dict_ae)
194
+ self.log_dict(log_dict_disc)
195
+ return self.log_dict
196
+
197
+ def configure_optimizers(self):
198
+ lr_d = self.learning_rate
199
+ lr_g = self.lr_g_factor*self.learning_rate
200
+ print("lr_d", lr_d)
201
+ print("lr_g", lr_g)
202
+ opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
203
+ list(self.decoder.parameters())+
204
+ list(self.quantize.parameters())+
205
+ list(self.quant_conv.parameters())+
206
+ list(self.post_quant_conv.parameters()),
207
+ lr=lr_g, betas=(0.5, 0.9))
208
+ opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
209
+ lr=lr_d, betas=(0.5, 0.9))
210
+
211
+ if self.scheduler_config is not None:
212
+ scheduler = instantiate_from_config(self.scheduler_config)
213
+
214
+ print("Setting up LambdaLR scheduler...")
215
+ scheduler = [
216
+ {
217
+ 'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule),
218
+ 'interval': 'step',
219
+ 'frequency': 1
220
+ },
221
+ {
222
+ 'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule),
223
+ 'interval': 'step',
224
+ 'frequency': 1
225
+ },
226
+ ]
227
+ return [opt_ae, opt_disc], scheduler
228
+ return [opt_ae, opt_disc], []
229
+
230
+ def get_last_layer(self):
231
+ return self.decoder.conv_out.weight
232
+
233
+ def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
234
+ log = dict()
235
+ x = self.get_input(batch, self.image_key)
236
+ x = x.to(self.device)
237
+ if only_inputs:
238
+ log["inputs"] = x
239
+ return log
240
+ xrec, _ = self(x)
241
+ if x.shape[1] > 3:
242
+ # colorize with random projection
243
+ assert xrec.shape[1] > 3
244
+ x = self.to_rgb(x)
245
+ xrec = self.to_rgb(xrec)
246
+ log["inputs"] = x
247
+ log["reconstructions"] = xrec
248
+ if plot_ema:
249
+ with self.ema_scope():
250
+ xrec_ema, _ = self(x)
251
+ if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema)
252
+ log["reconstructions_ema"] = xrec_ema
253
+ return log
254
+
255
+ def to_rgb(self, x):
256
+ assert self.image_key == "segmentation"
257
+ if not hasattr(self, "colorize"):
258
+ self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
259
+ x = F.conv2d(x, weight=self.colorize)
260
+ x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
261
+ return x
262
+
263
+
264
+ class VQModelInterface(VQModel):
265
+ def __init__(self, embed_dim, *args, **kwargs):
266
+ super().__init__(embed_dim=embed_dim, *args, **kwargs)
267
+ self.embed_dim = embed_dim
268
+
269
+ def encode(self, x):
270
+ h = self.encoder(x)
271
+ h = self.quant_conv(h)
272
+ return h
273
+
274
+ def decode(self, h, force_not_quantize=False):
275
+ # also go through quantization layer
276
+ if not force_not_quantize:
277
+ quant, emb_loss, info = self.quantize(h)
278
+ else:
279
+ quant = h
280
+ quant = self.post_quant_conv(quant)
281
+ dec = self.decoder(quant)
282
+ return dec
283
+
284
+
285
+ class AutoencoderKL(pl.LightningModule):
286
+ def __init__(self,
287
+ ddconfig,
288
+ lossconfig,
289
+ embed_dim,
290
+ ckpt_path=None,
291
+ ignore_keys=[],
292
+ image_key="image",
293
+ colorize_nlabels=None,
294
+ monitor=None,
295
+ ):
296
+ super().__init__()
297
+ self.image_key = image_key
298
+ self.encoder = Encoder(**ddconfig)
299
+ self.decoder = Decoder(**ddconfig)
300
+ self.loss = instantiate_from_config(lossconfig)
301
+ assert ddconfig["double_z"]
302
+ self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
303
+ self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
304
+ self.embed_dim = embed_dim
305
+ if colorize_nlabels is not None:
306
+ assert type(colorize_nlabels)==int
307
+ self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
308
+ if monitor is not None:
309
+ self.monitor = monitor
310
+ if ckpt_path is not None:
311
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
312
+
313
+ def init_from_ckpt(self, path, ignore_keys=list()):
314
+ sd = torch.load(path, map_location="cpu")["state_dict"]
315
+ keys = list(sd.keys())
316
+ for k in keys:
317
+ for ik in ignore_keys:
318
+ if k.startswith(ik):
319
+ print("Deleting key {} from state_dict.".format(k))
320
+ del sd[k]
321
+ self.load_state_dict(sd, strict=False)
322
+ print(f"Restored from {path}")
323
+
324
+ def encode(self, x):
325
+ h = self.encoder(x)
326
+ moments = self.quant_conv(h)
327
+ posterior = DiagonalGaussianDistribution(moments)
328
+ return posterior
329
+
330
+ def decode(self, z):
331
+ z = self.post_quant_conv(z)
332
+ dec = self.decoder(z)
333
+ return dec
334
+
335
+ def forward(self, input, sample_posterior=True):
336
+ posterior = self.encode(input)
337
+ if sample_posterior:
338
+ z = posterior.sample()
339
+ else:
340
+ z = posterior.mode()
341
+ dec = self.decode(z)
342
+ return dec, posterior
343
+
344
+ def get_input(self, batch, k):
345
+ x = batch[k]
346
+ if len(x.shape) == 3:
347
+ x = x[..., None]
348
+ x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
349
+ return x
350
+
351
+ def training_step(self, batch, batch_idx, optimizer_idx):
352
+ inputs = self.get_input(batch, self.image_key)
353
+ reconstructions, posterior = self(inputs)
354
+
355
+ if optimizer_idx == 0:
356
+ # train encoder+decoder+logvar
357
+ aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
358
+ last_layer=self.get_last_layer(), split="train")
359
+ self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
360
+ self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
361
+ return aeloss
362
+
363
+ if optimizer_idx == 1:
364
+ # train the discriminator
365
+ discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
366
+ last_layer=self.get_last_layer(), split="train")
367
+
368
+ self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
369
+ self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
370
+ return discloss
371
+
372
+ def validation_step(self, batch, batch_idx):
373
+ inputs = self.get_input(batch, self.image_key)
374
+ reconstructions, posterior = self(inputs)
375
+ aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
376
+ last_layer=self.get_last_layer(), split="val")
377
+
378
+ discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
379
+ last_layer=self.get_last_layer(), split="val")
380
+
381
+ self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
382
+ self.log_dict(log_dict_ae)
383
+ self.log_dict(log_dict_disc)
384
+ return self.log_dict
385
+
386
+ def configure_optimizers(self):
387
+ lr = self.learning_rate
388
+ opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
389
+ list(self.decoder.parameters())+
390
+ list(self.quant_conv.parameters())+
391
+ list(self.post_quant_conv.parameters()),
392
+ lr=lr, betas=(0.5, 0.9))
393
+ opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
394
+ lr=lr, betas=(0.5, 0.9))
395
+ return [opt_ae, opt_disc], []
396
+
397
+ def get_last_layer(self):
398
+ return self.decoder.conv_out.weight
399
+
400
+ @torch.no_grad()
401
+ def log_images(self, batch, only_inputs=False, **kwargs):
402
+ log = dict()
403
+ x = self.get_input(batch, self.image_key)
404
+ x = x.to(self.device)
405
+ if not only_inputs:
406
+ xrec, posterior = self(x)
407
+ if x.shape[1] > 3:
408
+ # colorize with random projection
409
+ assert xrec.shape[1] > 3
410
+ x = self.to_rgb(x)
411
+ xrec = self.to_rgb(xrec)
412
+ log["samples"] = self.decode(torch.randn_like(posterior.sample()))
413
+ log["reconstructions"] = xrec
414
+ log["inputs"] = x
415
+ return log
416
+
417
+ def to_rgb(self, x):
418
+ assert self.image_key == "segmentation"
419
+ if not hasattr(self, "colorize"):
420
+ self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
421
+ x = F.conv2d(x, weight=self.colorize)
422
+ x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
423
+ return x
424
+
425
+
426
+ class IdentityFirstStage(torch.nn.Module):
427
+ def __init__(self, *args, vq_interface=False, **kwargs):
428
+ self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff
429
+ super().__init__()
430
+
431
+ def encode(self, x, *args, **kwargs):
432
+ return x
433
+
434
+ def decode(self, x, *args, **kwargs):
435
+ return x
436
+
437
+ def quantize(self, x, *args, **kwargs):
438
+ if self.vq_interface:
439
+ return x, None, [None, None, None]
440
+ return x
441
+
442
+ def forward(self, x, *args, **kwargs):
443
+ return x
models/ldm/models/diffusion/__init__.py ADDED
File without changes
models/ldm/models/diffusion/classifier.py ADDED
@@ -0,0 +1,267 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import pytorch_lightning as pl
4
+ from omegaconf import OmegaConf
5
+ from torch.nn import functional as F
6
+ from torch.optim import AdamW
7
+ from torch.optim.lr_scheduler import LambdaLR
8
+ from copy import deepcopy
9
+ from einops import rearrange
10
+ from glob import glob
11
+ from natsort import natsorted
12
+
13
+ from ldm.modules.diffusionmodules.openaimodel import EncoderUNetModel, UNetModel
14
+ from ldm.util import log_txt_as_img, default, ismap, instantiate_from_config
15
+
16
+ __models__ = {
17
+ 'class_label': EncoderUNetModel,
18
+ 'segmentation': UNetModel
19
+ }
20
+
21
+
22
+ def disabled_train(self, mode=True):
23
+ """Overwrite model.train with this function to make sure train/eval mode
24
+ does not change anymore."""
25
+ return self
26
+
27
+
28
+ class NoisyLatentImageClassifier(pl.LightningModule):
29
+
30
+ def __init__(self,
31
+ diffusion_path,
32
+ num_classes,
33
+ ckpt_path=None,
34
+ pool='attention',
35
+ label_key=None,
36
+ diffusion_ckpt_path=None,
37
+ scheduler_config=None,
38
+ weight_decay=1.e-2,
39
+ log_steps=10,
40
+ monitor='val/loss',
41
+ *args,
42
+ **kwargs):
43
+ super().__init__(*args, **kwargs)
44
+ self.num_classes = num_classes
45
+ # get latest config of diffusion model
46
+ diffusion_config = natsorted(glob(os.path.join(diffusion_path, 'configs', '*-project.yaml')))[-1]
47
+ self.diffusion_config = OmegaConf.load(diffusion_config).model
48
+ self.diffusion_config.params.ckpt_path = diffusion_ckpt_path
49
+ self.load_diffusion()
50
+
51
+ self.monitor = monitor
52
+ self.numd = self.diffusion_model.first_stage_model.encoder.num_resolutions - 1
53
+ self.log_time_interval = self.diffusion_model.num_timesteps // log_steps
54
+ self.log_steps = log_steps
55
+
56
+ self.label_key = label_key if not hasattr(self.diffusion_model, 'cond_stage_key') \
57
+ else self.diffusion_model.cond_stage_key
58
+
59
+ assert self.label_key is not None, 'label_key neither in diffusion model nor in model.params'
60
+
61
+ if self.label_key not in __models__:
62
+ raise NotImplementedError()
63
+
64
+ self.load_classifier(ckpt_path, pool)
65
+
66
+ self.scheduler_config = scheduler_config
67
+ self.use_scheduler = self.scheduler_config is not None
68
+ self.weight_decay = weight_decay
69
+
70
+ def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
71
+ sd = torch.load(path, map_location="cpu")
72
+ if "state_dict" in list(sd.keys()):
73
+ sd = sd["state_dict"]
74
+ keys = list(sd.keys())
75
+ for k in keys:
76
+ for ik in ignore_keys:
77
+ if k.startswith(ik):
78
+ print("Deleting key {} from state_dict.".format(k))
79
+ del sd[k]
80
+ missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
81
+ sd, strict=False)
82
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
83
+ if len(missing) > 0:
84
+ print(f"Missing Keys: {missing}")
85
+ if len(unexpected) > 0:
86
+ print(f"Unexpected Keys: {unexpected}")
87
+
88
+ def load_diffusion(self):
89
+ model = instantiate_from_config(self.diffusion_config)
90
+ self.diffusion_model = model.eval()
91
+ self.diffusion_model.train = disabled_train
92
+ for param in self.diffusion_model.parameters():
93
+ param.requires_grad = False
94
+
95
+ def load_classifier(self, ckpt_path, pool):
96
+ model_config = deepcopy(self.diffusion_config.params.unet_config.params)
97
+ model_config.in_channels = self.diffusion_config.params.unet_config.params.out_channels
98
+ model_config.out_channels = self.num_classes
99
+ if self.label_key == 'class_label':
100
+ model_config.pool = pool
101
+
102
+ self.model = __models__[self.label_key](**model_config)
103
+ if ckpt_path is not None:
104
+ print('#####################################################################')
105
+ print(f'load from ckpt "{ckpt_path}"')
106
+ print('#####################################################################')
107
+ self.init_from_ckpt(ckpt_path)
108
+
109
+ @torch.no_grad()
110
+ def get_x_noisy(self, x, t, noise=None):
111
+ noise = default(noise, lambda: torch.randn_like(x))
112
+ continuous_sqrt_alpha_cumprod = None
113
+ if self.diffusion_model.use_continuous_noise:
114
+ continuous_sqrt_alpha_cumprod = self.diffusion_model.sample_continuous_noise_level(x.shape[0], t + 1)
115
+ # todo: make sure t+1 is correct here
116
+
117
+ return self.diffusion_model.q_sample(x_start=x, t=t, noise=noise,
118
+ continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod)
119
+
120
+ def forward(self, x_noisy, t, *args, **kwargs):
121
+ return self.model(x_noisy, t)
122
+
123
+ @torch.no_grad()
124
+ def get_input(self, batch, k):
125
+ x = batch[k]
126
+ if len(x.shape) == 3:
127
+ x = x[..., None]
128
+ x = rearrange(x, 'b h w c -> b c h w')
129
+ x = x.to(memory_format=torch.contiguous_format).float()
130
+ return x
131
+
132
+ @torch.no_grad()
133
+ def get_conditioning(self, batch, k=None):
134
+ if k is None:
135
+ k = self.label_key
136
+ assert k is not None, 'Needs to provide label key'
137
+
138
+ targets = batch[k].to(self.device)
139
+
140
+ if self.label_key == 'segmentation':
141
+ targets = rearrange(targets, 'b h w c -> b c h w')
142
+ for down in range(self.numd):
143
+ h, w = targets.shape[-2:]
144
+ targets = F.interpolate(targets, size=(h // 2, w // 2), mode='nearest')
145
+
146
+ # targets = rearrange(targets,'b c h w -> b h w c')
147
+
148
+ return targets
149
+
150
+ def compute_top_k(self, logits, labels, k, reduction="mean"):
151
+ _, top_ks = torch.topk(logits, k, dim=1)
152
+ if reduction == "mean":
153
+ return (top_ks == labels[:, None]).float().sum(dim=-1).mean().item()
154
+ elif reduction == "none":
155
+ return (top_ks == labels[:, None]).float().sum(dim=-1)
156
+
157
+ def on_train_epoch_start(self):
158
+ # save some memory
159
+ self.diffusion_model.model.to('cpu')
160
+
161
+ @torch.no_grad()
162
+ def write_logs(self, loss, logits, targets):
163
+ log_prefix = 'train' if self.training else 'val'
164
+ log = {}
165
+ log[f"{log_prefix}/loss"] = loss.mean()
166
+ log[f"{log_prefix}/acc@1"] = self.compute_top_k(
167
+ logits, targets, k=1, reduction="mean"
168
+ )
169
+ log[f"{log_prefix}/acc@5"] = self.compute_top_k(
170
+ logits, targets, k=5, reduction="mean"
171
+ )
172
+
173
+ self.log_dict(log, prog_bar=False, logger=True, on_step=self.training, on_epoch=True)
174
+ self.log('loss', log[f"{log_prefix}/loss"], prog_bar=True, logger=False)
175
+ self.log('global_step', self.global_step, logger=False, on_epoch=False, prog_bar=True)
176
+ lr = self.optimizers().param_groups[0]['lr']
177
+ self.log('lr_abs', lr, on_step=True, logger=True, on_epoch=False, prog_bar=True)
178
+
179
+ def shared_step(self, batch, t=None):
180
+ x, *_ = self.diffusion_model.get_input(batch, k=self.diffusion_model.first_stage_key)
181
+ targets = self.get_conditioning(batch)
182
+ if targets.dim() == 4:
183
+ targets = targets.argmax(dim=1)
184
+ if t is None:
185
+ t = torch.randint(0, self.diffusion_model.num_timesteps, (x.shape[0],), device=self.device).long()
186
+ else:
187
+ t = torch.full(size=(x.shape[0],), fill_value=t, device=self.device).long()
188
+ x_noisy = self.get_x_noisy(x, t)
189
+ logits = self(x_noisy, t)
190
+
191
+ loss = F.cross_entropy(logits, targets, reduction='none')
192
+
193
+ self.write_logs(loss.detach(), logits.detach(), targets.detach())
194
+
195
+ loss = loss.mean()
196
+ return loss, logits, x_noisy, targets
197
+
198
+ def training_step(self, batch, batch_idx):
199
+ loss, *_ = self.shared_step(batch)
200
+ return loss
201
+
202
+ def reset_noise_accs(self):
203
+ self.noisy_acc = {t: {'acc@1': [], 'acc@5': []} for t in
204
+ range(0, self.diffusion_model.num_timesteps, self.diffusion_model.log_every_t)}
205
+
206
+ def on_validation_start(self):
207
+ self.reset_noise_accs()
208
+
209
+ @torch.no_grad()
210
+ def validation_step(self, batch, batch_idx):
211
+ loss, *_ = self.shared_step(batch)
212
+
213
+ for t in self.noisy_acc:
214
+ _, logits, _, targets = self.shared_step(batch, t)
215
+ self.noisy_acc[t]['acc@1'].append(self.compute_top_k(logits, targets, k=1, reduction='mean'))
216
+ self.noisy_acc[t]['acc@5'].append(self.compute_top_k(logits, targets, k=5, reduction='mean'))
217
+
218
+ return loss
219
+
220
+ def configure_optimizers(self):
221
+ optimizer = AdamW(self.model.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay)
222
+
223
+ if self.use_scheduler:
224
+ scheduler = instantiate_from_config(self.scheduler_config)
225
+
226
+ print("Setting up LambdaLR scheduler...")
227
+ scheduler = [
228
+ {
229
+ 'scheduler': LambdaLR(optimizer, lr_lambda=scheduler.schedule),
230
+ 'interval': 'step',
231
+ 'frequency': 1
232
+ }]
233
+ return [optimizer], scheduler
234
+
235
+ return optimizer
236
+
237
+ @torch.no_grad()
238
+ def log_images(self, batch, N=8, *args, **kwargs):
239
+ log = dict()
240
+ x = self.get_input(batch, self.diffusion_model.first_stage_key)
241
+ log['inputs'] = x
242
+
243
+ y = self.get_conditioning(batch)
244
+
245
+ if self.label_key == 'class_label':
246
+ y = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
247
+ log['labels'] = y
248
+
249
+ if ismap(y):
250
+ log['labels'] = self.diffusion_model.to_rgb(y)
251
+
252
+ for step in range(self.log_steps):
253
+ current_time = step * self.log_time_interval
254
+
255
+ _, logits, x_noisy, _ = self.shared_step(batch, t=current_time)
256
+
257
+ log[f'inputs@t{current_time}'] = x_noisy
258
+
259
+ pred = F.one_hot(logits.argmax(dim=1), num_classes=self.num_classes)
260
+ pred = rearrange(pred, 'b h w c -> b c h w')
261
+
262
+ log[f'pred@t{current_time}'] = self.diffusion_model.to_rgb(pred)
263
+
264
+ for key in log:
265
+ log[key] = log[key][:N]
266
+
267
+ return log
models/ldm/models/diffusion/ddim.py ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """SAMPLING ONLY."""
2
+
3
+ import torch
4
+ import numpy as np
5
+ from tqdm import tqdm
6
+ from functools import partial
7
+ from einops import rearrange
8
+
9
+ from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
10
+ from ldm.models.diffusion.sampling_util import renorm_thresholding, norm_thresholding, spatial_norm_thresholding
11
+
12
+
13
+ class DDIMSampler(object):
14
+ def __init__(self, model, schedule="linear", **kwargs):
15
+ super().__init__()
16
+ self.model = model
17
+ self.ddpm_num_timesteps = model.num_timesteps
18
+ self.schedule = schedule
19
+
20
+ def to(self, device):
21
+ """Same as to in torch module
22
+ Don't really underestand why this isn't a module in the first place"""
23
+ for k, v in self.__dict__.items():
24
+ if isinstance(v, torch.Tensor):
25
+ new_v = getattr(self, k).to(device)
26
+ setattr(self, k, new_v)
27
+
28
+
29
+ def register_buffer(self, name, attr):
30
+ if type(attr) == torch.Tensor:
31
+ if attr.device != torch.device("cuda"):
32
+ attr = attr.to(torch.device("cuda"))
33
+ setattr(self, name, attr)
34
+
35
+ def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
36
+ self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
37
+ num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
38
+ alphas_cumprod = self.model.alphas_cumprod
39
+ assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
40
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
41
+
42
+ self.register_buffer('betas', to_torch(self.model.betas))
43
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
44
+ self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
45
+
46
+ # calculations for diffusion q(x_t | x_{t-1}) and others
47
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
48
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
49
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
50
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
51
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
52
+
53
+ # ddim sampling parameters
54
+ ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
55
+ ddim_timesteps=self.ddim_timesteps,
56
+ eta=ddim_eta,verbose=verbose)
57
+ self.register_buffer('ddim_sigmas', ddim_sigmas)
58
+ self.register_buffer('ddim_alphas', ddim_alphas)
59
+ self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
60
+ self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
61
+ sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
62
+ (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
63
+ 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
64
+ self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
65
+
66
+ @torch.no_grad()
67
+ def sample(self,
68
+ S,
69
+ batch_size,
70
+ shape,
71
+ conditioning=None,
72
+ callback=None,
73
+ normals_sequence=None,
74
+ img_callback=None,
75
+ quantize_x0=False,
76
+ eta=0.,
77
+ mask=None,
78
+ x0=None,
79
+ temperature=1.,
80
+ noise_dropout=0.,
81
+ score_corrector=None,
82
+ corrector_kwargs=None,
83
+ verbose=True,
84
+ x_T=None,
85
+ log_every_t=100,
86
+ unconditional_guidance_scale=1.,
87
+ unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
88
+ dynamic_threshold=None,
89
+ **kwargs
90
+ ):
91
+ if conditioning is not None:
92
+ if isinstance(conditioning, dict):
93
+ ctmp = conditioning[list(conditioning.keys())[0]]
94
+ while isinstance(ctmp, list): ctmp = ctmp[0]
95
+ cbs = ctmp.shape[0]
96
+ if cbs != batch_size:
97
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
98
+
99
+ else:
100
+ if conditioning.shape[0] != batch_size:
101
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
102
+
103
+ self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
104
+ # sampling
105
+ C, H, W = shape
106
+ size = (batch_size, C, H, W)
107
+ print(f'Data shape for DDIM sampling is {size}, eta {eta}')
108
+
109
+ samples, intermediates = self.ddim_sampling(conditioning, size,
110
+ callback=callback,
111
+ img_callback=img_callback,
112
+ quantize_denoised=quantize_x0,
113
+ mask=mask, x0=x0,
114
+ ddim_use_original_steps=False,
115
+ noise_dropout=noise_dropout,
116
+ temperature=temperature,
117
+ score_corrector=score_corrector,
118
+ corrector_kwargs=corrector_kwargs,
119
+ x_T=x_T,
120
+ log_every_t=log_every_t,
121
+ unconditional_guidance_scale=unconditional_guidance_scale,
122
+ unconditional_conditioning=unconditional_conditioning,
123
+ dynamic_threshold=dynamic_threshold,
124
+ )
125
+ return samples, intermediates
126
+
127
+ @torch.no_grad()
128
+ def ddim_sampling(self, cond, shape,
129
+ x_T=None, ddim_use_original_steps=False,
130
+ callback=None, timesteps=None, quantize_denoised=False,
131
+ mask=None, x0=None, img_callback=None, log_every_t=100,
132
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
133
+ unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
134
+ t_start=-1):
135
+ device = self.model.betas.device
136
+ b = shape[0]
137
+ if x_T is None:
138
+ img = torch.randn(shape, device=device)
139
+ else:
140
+ img = x_T
141
+
142
+ if timesteps is None:
143
+ timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
144
+ elif timesteps is not None and not ddim_use_original_steps:
145
+ subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
146
+ timesteps = self.ddim_timesteps[:subset_end]
147
+
148
+ timesteps = timesteps[:t_start]
149
+
150
+ intermediates = {'x_inter': [img], 'pred_x0': [img]}
151
+ time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
152
+ total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
153
+ print(f"Running DDIM Sampling with {total_steps} timesteps")
154
+
155
+ iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
156
+
157
+ for i, step in enumerate(iterator):
158
+ index = total_steps - i - 1
159
+ ts = torch.full((b,), step, device=device, dtype=torch.long)
160
+
161
+ if mask is not None:
162
+ assert x0 is not None
163
+ img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
164
+ img = img_orig * mask + (1. - mask) * img
165
+
166
+ outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
167
+ quantize_denoised=quantize_denoised, temperature=temperature,
168
+ noise_dropout=noise_dropout, score_corrector=score_corrector,
169
+ corrector_kwargs=corrector_kwargs,
170
+ unconditional_guidance_scale=unconditional_guidance_scale,
171
+ unconditional_conditioning=unconditional_conditioning,
172
+ dynamic_threshold=dynamic_threshold)
173
+ img, pred_x0 = outs
174
+ if callback:
175
+ img = callback(i, img, pred_x0)
176
+ if img_callback: img_callback(pred_x0, i)
177
+
178
+ if index % log_every_t == 0 or index == total_steps - 1:
179
+ intermediates['x_inter'].append(img)
180
+ intermediates['pred_x0'].append(pred_x0)
181
+
182
+ return img, intermediates
183
+
184
+ @torch.no_grad()
185
+ def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
186
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
187
+ unconditional_guidance_scale=1., unconditional_conditioning=None,
188
+ dynamic_threshold=None):
189
+ b, *_, device = *x.shape, x.device
190
+
191
+ if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
192
+ e_t = self.model.apply_model(x, t, c)
193
+ else:
194
+ x_in = torch.cat([x] * 2)
195
+ t_in = torch.cat([t] * 2)
196
+ if isinstance(c, dict):
197
+ assert isinstance(unconditional_conditioning, dict)
198
+ c_in = dict()
199
+ for k in c:
200
+ if isinstance(c[k], list):
201
+ c_in[k] = [torch.cat([
202
+ unconditional_conditioning[k][i],
203
+ c[k][i]]) for i in range(len(c[k]))]
204
+ else:
205
+ c_in[k] = torch.cat([
206
+ unconditional_conditioning[k],
207
+ c[k]])
208
+ else:
209
+ c_in = torch.cat([unconditional_conditioning, c])
210
+ e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
211
+ e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
212
+
213
+ if score_corrector is not None:
214
+ assert self.model.parameterization == "eps"
215
+ e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
216
+
217
+ alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
218
+ alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
219
+ sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
220
+ sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
221
+ # select parameters corresponding to the currently considered timestep
222
+ a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
223
+ a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
224
+ sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
225
+ sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
226
+
227
+ # current prediction for x_0
228
+ pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
229
+ if quantize_denoised:
230
+ pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
231
+
232
+ if dynamic_threshold is not None:
233
+ pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
234
+
235
+ # direction pointing to x_t
236
+ dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
237
+ noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
238
+ if noise_dropout > 0.:
239
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
240
+ x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
241
+ return x_prev, pred_x0
242
+
243
+ @torch.no_grad()
244
+ def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
245
+ unconditional_guidance_scale=1.0, unconditional_conditioning=None):
246
+ num_reference_steps = self.ddpm_num_timesteps if use_original_steps else self.ddim_timesteps.shape[0]
247
+
248
+ assert t_enc <= num_reference_steps
249
+ num_steps = t_enc
250
+
251
+ if use_original_steps:
252
+ alphas_next = self.alphas_cumprod[:num_steps]
253
+ alphas = self.alphas_cumprod_prev[:num_steps]
254
+ else:
255
+ alphas_next = self.ddim_alphas[:num_steps]
256
+ alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
257
+
258
+ x_next = x0
259
+ intermediates = []
260
+ inter_steps = []
261
+ for i in tqdm(range(num_steps), desc='Encoding Image'):
262
+ t = torch.full((x0.shape[0],), i, device=self.model.device, dtype=torch.long)
263
+ if unconditional_guidance_scale == 1.:
264
+ noise_pred = self.model.apply_model(x_next, t, c)
265
+ else:
266
+ assert unconditional_conditioning is not None
267
+ e_t_uncond, noise_pred = torch.chunk(
268
+ self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
269
+ torch.cat((unconditional_conditioning, c))), 2)
270
+ noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)
271
+
272
+ xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
273
+ weighted_noise_pred = alphas_next[i].sqrt() * (
274
+ (1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
275
+ x_next = xt_weighted + weighted_noise_pred
276
+ if return_intermediates and i % (
277
+ num_steps // return_intermediates) == 0 and i < num_steps - 1:
278
+ intermediates.append(x_next)
279
+ inter_steps.append(i)
280
+ elif return_intermediates and i >= num_steps - 2:
281
+ intermediates.append(x_next)
282
+ inter_steps.append(i)
283
+
284
+ out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
285
+ if return_intermediates:
286
+ out.update({'intermediates': intermediates})
287
+ return x_next, out
288
+
289
+ @torch.no_grad()
290
+ def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
291
+ # fast, but does not allow for exact reconstruction
292
+ # t serves as an index to gather the correct alphas
293
+ if use_original_steps:
294
+ sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
295
+ sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
296
+ else:
297
+ sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
298
+ sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
299
+
300
+ if noise is None:
301
+ noise = torch.randn_like(x0)
302
+ return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
303
+ extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
304
+
305
+ @torch.no_grad()
306
+ def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
307
+ use_original_steps=False):
308
+
309
+ timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
310
+ timesteps = timesteps[:t_start]
311
+
312
+ time_range = np.flip(timesteps)
313
+ total_steps = timesteps.shape[0]
314
+ print(f"Running DDIM Sampling with {total_steps} timesteps")
315
+
316
+ iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
317
+ x_dec = x_latent
318
+ for i, step in enumerate(iterator):
319
+ index = total_steps - i - 1
320
+ ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
321
+ x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
322
+ unconditional_guidance_scale=unconditional_guidance_scale,
323
+ unconditional_conditioning=unconditional_conditioning)
324
+ return x_dec
models/ldm/models/diffusion/ddpm.py ADDED
@@ -0,0 +1,2024 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ wild mixture of
3
+ https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
4
+ https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
5
+ https://github.com/CompVis/taming-transformers
6
+ -- merci
7
+ """
8
+
9
+ import torch
10
+ import torch.nn as nn
11
+ import numpy as np
12
+ import pytorch_lightning as pl
13
+ from torch.optim.lr_scheduler import LambdaLR
14
+ from einops import rearrange, repeat
15
+ from contextlib import contextmanager, nullcontext
16
+ from functools import partial
17
+ import itertools
18
+ from tqdm import tqdm
19
+ from torchvision.utils import make_grid
20
+ from pytorch_lightning.utilities.distributed import rank_zero_only
21
+ from omegaconf import ListConfig
22
+
23
+ from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
24
+ from ldm.modules.ema import LitEma
25
+ from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
26
+ from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL
27
+ from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
28
+ from ldm.models.diffusion.ddim import DDIMSampler
29
+ from ldm.modules.attention import CrossAttention
30
+
31
+
32
+ __conditioning_keys__ = {'concat': 'c_concat',
33
+ 'crossattn': 'c_crossattn',
34
+ 'adm': 'y'}
35
+
36
+
37
+ def disabled_train(self, mode=True):
38
+ """Overwrite model.train with this function to make sure train/eval mode
39
+ does not change anymore."""
40
+ return self
41
+
42
+
43
+ def uniform_on_device(r1, r2, shape, device):
44
+ return (r1 - r2) * torch.rand(*shape, device=device) + r2
45
+
46
+
47
+ class DDPM(pl.LightningModule):
48
+ # classic DDPM with Gaussian diffusion, in image space
49
+ def __init__(self,
50
+ unet_config,
51
+ timesteps=1000,
52
+ beta_schedule="linear",
53
+ loss_type="l2",
54
+ ckpt_path=None,
55
+ ignore_keys=[],
56
+ load_only_unet=False,
57
+ monitor="val/loss",
58
+ use_ema=True,
59
+ first_stage_key="image",
60
+ image_size=256,
61
+ channels=3,
62
+ log_every_t=100,
63
+ clip_denoised=True,
64
+ linear_start=1e-4,
65
+ linear_end=2e-2,
66
+ cosine_s=8e-3,
67
+ given_betas=None,
68
+ original_elbo_weight=0.,
69
+ v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
70
+ l_simple_weight=1.,
71
+ conditioning_key=None,
72
+ parameterization="eps", # all assuming fixed variance schedules
73
+ scheduler_config=None,
74
+ use_positional_encodings=False,
75
+ learn_logvar=False,
76
+ logvar_init=0.,
77
+ make_it_fit=False,
78
+ ucg_training=None,
79
+ ):
80
+ super().__init__()
81
+ assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'
82
+ self.parameterization = parameterization
83
+ print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
84
+ self.cond_stage_model = None
85
+ self.clip_denoised = clip_denoised
86
+ self.log_every_t = log_every_t
87
+ self.first_stage_key = first_stage_key
88
+ self.image_size = image_size # try conv?
89
+ self.channels = channels
90
+ self.use_positional_encodings = use_positional_encodings
91
+ self.model = DiffusionWrapper(unet_config, conditioning_key)
92
+ count_params(self.model, verbose=True)
93
+ self.use_ema = use_ema
94
+ if self.use_ema:
95
+ self.model_ema = LitEma(self.model)
96
+ print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
97
+
98
+ self.use_scheduler = scheduler_config is not None
99
+ if self.use_scheduler:
100
+ self.scheduler_config = scheduler_config
101
+
102
+ self.v_posterior = v_posterior
103
+ self.original_elbo_weight = original_elbo_weight
104
+ self.l_simple_weight = l_simple_weight
105
+
106
+ if monitor is not None:
107
+ self.monitor = monitor
108
+ self.make_it_fit = make_it_fit
109
+ if ckpt_path is not None:
110
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
111
+
112
+ self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
113
+ linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
114
+
115
+ self.loss_type = loss_type
116
+
117
+ self.learn_logvar = learn_logvar
118
+ self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
119
+ if self.learn_logvar:
120
+ self.logvar = nn.Parameter(self.logvar, requires_grad=True)
121
+
122
+ self.ucg_training = ucg_training or dict()
123
+ if self.ucg_training:
124
+ self.ucg_prng = np.random.RandomState()
125
+
126
+ def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
127
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
128
+ if exists(given_betas):
129
+ betas = given_betas
130
+ else:
131
+ betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
132
+ cosine_s=cosine_s)
133
+ alphas = 1. - betas
134
+ alphas_cumprod = np.cumprod(alphas, axis=0)
135
+ alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
136
+
137
+ timesteps, = betas.shape
138
+ self.num_timesteps = int(timesteps)
139
+ self.linear_start = linear_start
140
+ self.linear_end = linear_end
141
+ assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
142
+
143
+ to_torch = partial(torch.tensor, dtype=torch.float32)
144
+
145
+ self.register_buffer('betas', to_torch(betas))
146
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
147
+ self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
148
+
149
+ # calculations for diffusion q(x_t | x_{t-1}) and others
150
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
151
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
152
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
153
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
154
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
155
+
156
+ # calculations for posterior q(x_{t-1} | x_t, x_0)
157
+ posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
158
+ 1. - alphas_cumprod) + self.v_posterior * betas
159
+ # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
160
+ self.register_buffer('posterior_variance', to_torch(posterior_variance))
161
+ # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
162
+ self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
163
+ self.register_buffer('posterior_mean_coef1', to_torch(
164
+ betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
165
+ self.register_buffer('posterior_mean_coef2', to_torch(
166
+ (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
167
+
168
+ if self.parameterization == "eps":
169
+ lvlb_weights = self.betas ** 2 / (
170
+ 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
171
+ elif self.parameterization == "x0":
172
+ lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
173
+ else:
174
+ raise NotImplementedError("mu not supported")
175
+ # TODO how to choose this term
176
+ lvlb_weights[0] = lvlb_weights[1]
177
+ self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
178
+ assert not torch.isnan(self.lvlb_weights).all()
179
+
180
+ @contextmanager
181
+ def ema_scope(self, context=None):
182
+ if self.use_ema:
183
+ self.model_ema.store(self.model.parameters())
184
+ self.model_ema.copy_to(self.model)
185
+ if context is not None:
186
+ print(f"{context}: Switched to EMA weights")
187
+ try:
188
+ yield None
189
+ finally:
190
+ if self.use_ema:
191
+ self.model_ema.restore(self.model.parameters())
192
+ if context is not None:
193
+ print(f"{context}: Restored training weights")
194
+
195
+ @torch.no_grad()
196
+ def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
197
+ sd = torch.load(path, map_location="cpu")
198
+ if "state_dict" in list(sd.keys()):
199
+ sd = sd["state_dict"]
200
+ keys = list(sd.keys())
201
+
202
+ if self.make_it_fit:
203
+ n_params = len([name for name, _ in
204
+ itertools.chain(self.named_parameters(),
205
+ self.named_buffers())])
206
+ for name, param in tqdm(
207
+ itertools.chain(self.named_parameters(),
208
+ self.named_buffers()),
209
+ desc="Fitting old weights to new weights",
210
+ total=n_params
211
+ ):
212
+ if not name in sd:
213
+ continue
214
+ old_shape = sd[name].shape
215
+ new_shape = param.shape
216
+ assert len(old_shape)==len(new_shape)
217
+ if len(new_shape) > 2:
218
+ # we only modify first two axes
219
+ assert new_shape[2:] == old_shape[2:]
220
+ # assumes first axis corresponds to output dim
221
+ if not new_shape == old_shape:
222
+ new_param = param.clone()
223
+ old_param = sd[name]
224
+ if len(new_shape) == 1:
225
+ for i in range(new_param.shape[0]):
226
+ new_param[i] = old_param[i % old_shape[0]]
227
+ elif len(new_shape) >= 2:
228
+ for i in range(new_param.shape[0]):
229
+ for j in range(new_param.shape[1]):
230
+ new_param[i, j] = old_param[i % old_shape[0], j % old_shape[1]]
231
+
232
+ n_used_old = torch.ones(old_shape[1])
233
+ for j in range(new_param.shape[1]):
234
+ n_used_old[j % old_shape[1]] += 1
235
+ n_used_new = torch.zeros(new_shape[1])
236
+ for j in range(new_param.shape[1]):
237
+ n_used_new[j] = n_used_old[j % old_shape[1]]
238
+
239
+ n_used_new = n_used_new[None, :]
240
+ while len(n_used_new.shape) < len(new_shape):
241
+ n_used_new = n_used_new.unsqueeze(-1)
242
+ new_param /= n_used_new
243
+
244
+ sd[name] = new_param
245
+
246
+ missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
247
+ sd, strict=False)
248
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
249
+ if len(missing) > 0:
250
+ print(f"Missing Keys: {missing}")
251
+ if len(unexpected) > 0:
252
+ print(f"Unexpected Keys: {unexpected}")
253
+
254
+ def q_mean_variance(self, x_start, t):
255
+ """
256
+ Get the distribution q(x_t | x_0).
257
+ :param x_start: the [N x C x ...] tensor of noiseless inputs.
258
+ :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
259
+ :return: A tuple (mean, variance, log_variance), all of x_start's shape.
260
+ """
261
+ mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
262
+ variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
263
+ log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
264
+ return mean, variance, log_variance
265
+
266
+ def predict_start_from_noise(self, x_t, t, noise):
267
+ return (
268
+ extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
269
+ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
270
+ )
271
+
272
+ def q_posterior(self, x_start, x_t, t):
273
+ posterior_mean = (
274
+ extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
275
+ extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
276
+ )
277
+ posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
278
+ posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
279
+ return posterior_mean, posterior_variance, posterior_log_variance_clipped
280
+
281
+ def p_mean_variance(self, x, t, clip_denoised: bool):
282
+ model_out = self.model(x, t)
283
+ if self.parameterization == "eps":
284
+ x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
285
+ elif self.parameterization == "x0":
286
+ x_recon = model_out
287
+ if clip_denoised:
288
+ x_recon.clamp_(-1., 1.)
289
+
290
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
291
+ return model_mean, posterior_variance, posterior_log_variance
292
+
293
+ @torch.no_grad()
294
+ def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
295
+ b, *_, device = *x.shape, x.device
296
+ model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
297
+ noise = noise_like(x.shape, device, repeat_noise)
298
+ # no noise when t == 0
299
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
300
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
301
+
302
+ @torch.no_grad()
303
+ def p_sample_loop(self, shape, return_intermediates=False):
304
+ device = self.betas.device
305
+ b = shape[0]
306
+ img = torch.randn(shape, device=device)
307
+ intermediates = [img]
308
+ for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
309
+ img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
310
+ clip_denoised=self.clip_denoised)
311
+ if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
312
+ intermediates.append(img)
313
+ if return_intermediates:
314
+ return img, intermediates
315
+ return img
316
+
317
+ @torch.no_grad()
318
+ def sample(self, batch_size=16, return_intermediates=False):
319
+ image_size = self.image_size
320
+ channels = self.channels
321
+ return self.p_sample_loop((batch_size, channels, image_size, image_size),
322
+ return_intermediates=return_intermediates)
323
+
324
+ def q_sample(self, x_start, t, noise=None):
325
+ noise = default(noise, lambda: torch.randn_like(x_start))
326
+ return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
327
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
328
+
329
+ def get_loss(self, pred, target, mean=True):
330
+ if self.loss_type == 'l1':
331
+ loss = (target - pred).abs()
332
+ if mean:
333
+ loss = loss.mean()
334
+ elif self.loss_type == 'l2':
335
+ if mean:
336
+ loss = torch.nn.functional.mse_loss(target, pred)
337
+ else:
338
+ loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
339
+ else:
340
+ raise NotImplementedError("unknown loss type '{loss_type}'")
341
+
342
+ return loss
343
+
344
+ def p_losses(self, x_start, t, noise=None):
345
+ noise = default(noise, lambda: torch.randn_like(x_start))
346
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
347
+ model_out = self.model(x_noisy, t)
348
+
349
+ loss_dict = {}
350
+ if self.parameterization == "eps":
351
+ target = noise
352
+ elif self.parameterization == "x0":
353
+ target = x_start
354
+ else:
355
+ raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")
356
+
357
+ loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
358
+
359
+ log_prefix = 'train' if self.training else 'val'
360
+
361
+ loss_dict.update({f'{log_prefix}/loss_simple': loss.mean().item()})
362
+ loss_simple = loss.mean() * self.l_simple_weight
363
+
364
+ loss_vlb = (self.lvlb_weights[t] * loss).mean()
365
+ loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb.item()})
366
+
367
+ loss = loss_simple + self.original_elbo_weight * loss_vlb
368
+
369
+ loss_dict.update({f'{log_prefix}/loss': loss.item()})
370
+
371
+ return loss, loss_dict
372
+
373
+ def forward(self, x, *args, **kwargs):
374
+ # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
375
+ # assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
376
+ t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
377
+ return self.p_losses(x, t, *args, **kwargs)
378
+
379
+ def get_input(self, batch, k):
380
+ x = batch[k]
381
+ if len(x.shape) == 3:
382
+ x = x[..., None]
383
+ x = rearrange(x, 'b h w c -> b c h w')
384
+ x = x.to(memory_format=torch.contiguous_format).float()
385
+ return x
386
+
387
+ def shared_step(self, batch):
388
+ x = self.get_input(batch, self.first_stage_key)
389
+ loss, loss_dict = self(x)
390
+ return loss, loss_dict
391
+
392
+ def training_step(self, batch, batch_idx):
393
+ for k in self.ucg_training:
394
+ p = self.ucg_training[k]["p"]
395
+ val = self.ucg_training[k]["val"]
396
+ if val is None:
397
+ val = ""
398
+ for i in range(len(batch[k])):
399
+ if self.ucg_prng.choice(2, p=[1-p, p]):
400
+ batch[k][i] = val
401
+
402
+ loss, loss_dict = self.shared_step(batch)
403
+
404
+ self.log_dict(loss_dict, prog_bar=True,
405
+ logger=True, on_step=True, on_epoch=True)
406
+
407
+ self.log("global_step", self.global_step,
408
+ prog_bar=True, logger=True, on_step=True, on_epoch=False)
409
+
410
+ if self.use_scheduler:
411
+ lr = self.optimizers().param_groups[0]['lr'].item()
412
+ self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
413
+
414
+ return loss
415
+
416
+ @torch.no_grad()
417
+ def validation_step(self, batch, batch_idx):
418
+ _, loss_dict_no_ema = self.shared_step(batch)
419
+ with self.ema_scope():
420
+ _, loss_dict_ema = self.shared_step(batch)
421
+ loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
422
+ self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
423
+ self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
424
+
425
+ def on_train_batch_end(self, *args, **kwargs):
426
+ if self.use_ema:
427
+ self.model_ema(self.model)
428
+
429
+ def _get_rows_from_list(self, samples):
430
+ n_imgs_per_row = len(samples)
431
+ denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
432
+ denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
433
+ denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
434
+ return denoise_grid
435
+
436
+ @torch.no_grad()
437
+ def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
438
+ log = dict()
439
+ x = self.get_input(batch, self.first_stage_key)
440
+ N = min(x.shape[0], N)
441
+ n_row = min(x.shape[0], n_row)
442
+ x = x.to(self.device)[:N]
443
+ log["inputs"] = x
444
+
445
+ # get diffusion row
446
+ diffusion_row = list()
447
+ x_start = x[:n_row]
448
+
449
+ for t in range(self.num_timesteps):
450
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
451
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
452
+ t = t.to(self.device).long()
453
+ noise = torch.randn_like(x_start)
454
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
455
+ diffusion_row.append(x_noisy)
456
+
457
+ log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
458
+
459
+ if sample:
460
+ # get denoise row
461
+ with self.ema_scope("Plotting"):
462
+ samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
463
+
464
+ log["samples"] = samples
465
+ log["denoise_row"] = self._get_rows_from_list(denoise_row)
466
+
467
+ if return_keys:
468
+ if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
469
+ return log
470
+ else:
471
+ return {key: log[key] for key in return_keys}
472
+ return log
473
+
474
+ def configure_optimizers(self):
475
+ lr = self.learning_rate
476
+ params = list(self.model.parameters())
477
+ if self.learn_logvar:
478
+ params = params + [self.logvar]
479
+ opt = torch.optim.AdamW(params, lr=lr)
480
+ return opt
481
+
482
+
483
+ class LatentDiffusion(DDPM):
484
+ """main class"""
485
+ def __init__(self,
486
+ first_stage_config,
487
+ cond_stage_config,
488
+ num_timesteps_cond=None,
489
+ cond_stage_key="image",
490
+ cond_stage_trainable=False,
491
+ concat_mode=True,
492
+ cat_key=None,
493
+ cond_stage_forward=None,
494
+ conditioning_key=None,
495
+ scale_factor=1.0,
496
+ scale_by_std=False,
497
+ unet_trainable=True,
498
+ use_clip_embdding=True,
499
+ *args, **kwargs):
500
+ self.use_clip_embdding = use_clip_embdding
501
+ self.num_timesteps_cond = default(num_timesteps_cond, 1)
502
+ self.scale_by_std = scale_by_std
503
+ assert self.num_timesteps_cond <= kwargs['timesteps']
504
+ # for backwards compatibility after implementation of DiffusionWrapper
505
+ if conditioning_key is None:
506
+ conditioning_key = 'concat' if concat_mode else 'crossattn'
507
+ if cond_stage_config == '__is_unconditional__':
508
+ conditioning_key = None
509
+ ckpt_path = kwargs.pop("ckpt_path", None)
510
+ ignore_keys = kwargs.pop("ignore_keys", [])
511
+ super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
512
+ self.concat_mode = concat_mode
513
+ # additional concat keys
514
+ self.cat_key = cat_key
515
+ self.cond_stage_trainable = cond_stage_trainable
516
+ self.unet_trainable = unet_trainable
517
+ self.cond_stage_key = cond_stage_key
518
+ try:
519
+ self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
520
+ except:
521
+ self.num_downs = 0
522
+ if not scale_by_std:
523
+ self.scale_factor = scale_factor
524
+ else:
525
+ self.register_buffer('scale_factor', torch.tensor(scale_factor))
526
+ self.instantiate_first_stage(first_stage_config)
527
+ self.instantiate_cond_stage(cond_stage_config)
528
+ self.cond_stage_forward = cond_stage_forward
529
+
530
+ # construct linear projection layer for concatenating image CLIP embedding and RT
531
+ # self.cc_projection = nn.Linear(772, 768)
532
+ # nn.init.eye_(list(self.cc_projection.parameters())[0][:768, :768])
533
+ # nn.init.zeros_(list(self.cc_projection.parameters())[1])
534
+ # self.cc_projection.requires_grad_(True)
535
+
536
+ self.clip_denoised = False
537
+ self.bbox_tokenizer = None
538
+
539
+ self.restarted_from_ckpt = False
540
+ if ckpt_path is not None:
541
+ self.init_from_ckpt(ckpt_path, ignore_keys)
542
+ self.restarted_from_ckpt = True
543
+
544
+ def make_cond_schedule(self, ):
545
+ self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
546
+ ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
547
+ self.cond_ids[:self.num_timesteps_cond] = ids
548
+
549
+ @rank_zero_only
550
+ @torch.no_grad()
551
+ def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
552
+ # only for very first batch
553
+ if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
554
+ assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
555
+ # set rescale weight to 1./std of encodings
556
+ print("### USING STD-RESCALING ###")
557
+ x = super().get_input(batch, self.first_stage_key)
558
+ x = x.to(self.device)
559
+ encoder_posterior = self.encode_first_stage(x)
560
+ z = self.get_first_stage_encoding(encoder_posterior).detach()
561
+ del self.scale_factor
562
+ self.register_buffer('scale_factor', 1. / z.flatten().std())
563
+ print(f"setting self.scale_factor to {self.scale_factor}")
564
+ print("### USING STD-RESCALING ###")
565
+
566
+ def register_schedule(self,
567
+ given_betas=None, beta_schedule="linear", timesteps=1000,
568
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
569
+ super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
570
+
571
+ self.shorten_cond_schedule = self.num_timesteps_cond > 1
572
+ if self.shorten_cond_schedule:
573
+ self.make_cond_schedule()
574
+
575
+ def instantiate_first_stage(self, config):
576
+ model = instantiate_from_config(config)
577
+ self.first_stage_model = model.eval()
578
+ self.first_stage_model.train = disabled_train
579
+ for param in self.first_stage_model.parameters():
580
+ param.requires_grad = False
581
+
582
+ def instantiate_cond_stage(self, config):
583
+ if not self.cond_stage_trainable:
584
+ if config == "__is_first_stage__":
585
+ print("Using first stage also as cond stage.")
586
+ self.cond_stage_model = self.first_stage_model
587
+ elif config == "__is_unconditional__":
588
+ print(f"Training {self.__class__.__name__} as an unconditional model.")
589
+ self.cond_stage_model = None
590
+ # self.be_unconditional = True
591
+ else:
592
+ model = instantiate_from_config(config)
593
+ self.cond_stage_model = model.eval()
594
+ self.cond_stage_model.train = disabled_train
595
+ for param in self.cond_stage_model.parameters():
596
+ param.requires_grad = False
597
+ else:
598
+ assert config != '__is_first_stage__'
599
+ assert config != '__is_unconditional__'
600
+ model = instantiate_from_config(config)
601
+ self.cond_stage_model = model
602
+
603
+ def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
604
+ denoise_row = []
605
+ for zd in tqdm(samples, desc=desc):
606
+ denoise_row.append(self.decode_first_stage(zd.to(self.device),
607
+ force_not_quantize=force_no_decoder_quantization))
608
+ n_imgs_per_row = len(denoise_row)
609
+ denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
610
+ denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
611
+ denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
612
+ denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
613
+ return denoise_grid
614
+
615
+ def get_first_stage_encoding(self, encoder_posterior):
616
+ if isinstance(encoder_posterior, DiagonalGaussianDistribution):
617
+ z = encoder_posterior.sample()
618
+ elif isinstance(encoder_posterior, torch.Tensor):
619
+ z = encoder_posterior
620
+ else:
621
+ raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
622
+ return self.scale_factor * z
623
+
624
+ def get_learned_conditioning(self, c):
625
+ if self.cond_stage_forward is None:
626
+ if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
627
+ c = self.cond_stage_model.encode(c)
628
+ if isinstance(c, DiagonalGaussianDistribution):
629
+ c = c.mode()
630
+ else:
631
+ c = self.cond_stage_model(c)
632
+ else:
633
+ assert hasattr(self.cond_stage_model, self.cond_stage_forward)
634
+ c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
635
+ return c
636
+
637
+ def meshgrid(self, h, w):
638
+ y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
639
+ x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
640
+
641
+ arr = torch.cat([y, x], dim=-1)
642
+ return arr
643
+
644
+ def delta_border(self, h, w):
645
+ """
646
+ :param h: height
647
+ :param w: width
648
+ :return: normalized distance to image border,
649
+ wtith min distance = 0 at border and max dist = 0.5 at image center
650
+ """
651
+ lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
652
+ arr = self.meshgrid(h, w) / lower_right_corner
653
+ dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
654
+ dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
655
+ edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
656
+ return edge_dist
657
+
658
+ def get_weighting(self, h, w, Ly, Lx, device):
659
+ weighting = self.delta_border(h, w)
660
+ weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
661
+ self.split_input_params["clip_max_weight"], )
662
+ weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
663
+
664
+ if self.split_input_params["tie_braker"]:
665
+ L_weighting = self.delta_border(Ly, Lx)
666
+ L_weighting = torch.clip(L_weighting,
667
+ self.split_input_params["clip_min_tie_weight"],
668
+ self.split_input_params["clip_max_tie_weight"])
669
+
670
+ L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
671
+ weighting = weighting * L_weighting
672
+ return weighting
673
+
674
+ def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
675
+ """
676
+ :param x: img of size (bs, c, h, w)
677
+ :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
678
+ """
679
+ bs, nc, h, w = x.shape
680
+
681
+ # number of crops in image
682
+ Ly = (h - kernel_size[0]) // stride[0] + 1
683
+ Lx = (w - kernel_size[1]) // stride[1] + 1
684
+
685
+ if uf == 1 and df == 1:
686
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
687
+ unfold = torch.nn.Unfold(**fold_params)
688
+
689
+ fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
690
+
691
+ weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
692
+ normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
693
+ weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
694
+
695
+ elif uf > 1 and df == 1:
696
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
697
+ unfold = torch.nn.Unfold(**fold_params)
698
+
699
+ fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
700
+ dilation=1, padding=0,
701
+ stride=(stride[0] * uf, stride[1] * uf))
702
+ fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
703
+
704
+ weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
705
+ normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
706
+ weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
707
+
708
+ elif df > 1 and uf == 1:
709
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
710
+ unfold = torch.nn.Unfold(**fold_params)
711
+
712
+ fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
713
+ dilation=1, padding=0,
714
+ stride=(stride[0] // df, stride[1] // df))
715
+ fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
716
+
717
+ weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
718
+ normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
719
+ weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
720
+
721
+ else:
722
+ raise NotImplementedError
723
+
724
+ return fold, unfold, normalization, weighting
725
+
726
+
727
+ @torch.no_grad()
728
+ def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
729
+ cond_key=None, return_original_cond=False, bs=None, uncond=0.05):
730
+ x = super().get_input(batch, k)
731
+
732
+ if bs is not None:
733
+ x = x[:bs]
734
+
735
+ x = x.to(self.device)
736
+ encoder_posterior = self.encode_first_stage(x)
737
+ z = self.get_first_stage_encoding(encoder_posterior).detach()
738
+ cond_key = cond_key or self.cond_stage_key
739
+ xc = super().get_input(batch, cond_key).to(self.device)
740
+ if bs is not None:
741
+ xc = xc[:bs]
742
+ cond = {}
743
+
744
+ if not self.cat_key is None:
745
+ cat_add = super().get_input(batch, self.cat_key).to(self.device)
746
+ if bs is not None:
747
+ cat_add = cat_add[:bs]
748
+
749
+ # To support classifier-free guidance, randomly drop out only text conditioning 5%, only image conditioning 5%, and both 5%.
750
+ random = torch.rand(x.size(0), device=x.device)
751
+ prompt_mask = rearrange(random < 2 * uncond, "n -> n 1 1")
752
+ input_mask = 1 - rearrange((random >= uncond).float() * (random < 3 * uncond).float(), "n -> n 1 1 1")
753
+ null_prompt = self.get_learned_conditioning([""])
754
+
755
+ # z.shape: [8, 4, 64, 64]; c.shape: [8, 1, 768]
756
+ # print('=========== xc shape ===========', xc.shape)
757
+ with torch.enable_grad():
758
+ clip_emb = self.get_learned_conditioning(xc if self.use_clip_embdding else [""]).detach()
759
+ null_prompt = self.get_learned_conditioning([""]).detach()
760
+ cond["c_crossattn"] = [torch.where(prompt_mask, null_prompt, clip_emb)]
761
+ cond["c_concat"] = [input_mask * self.encode_first_stage((xc.to(self.device))).mode().detach()]
762
+ if not self.cat_key is None:
763
+ cond["c_concat"] += [input_mask * self.encode_first_stage((cat_add.to(self.device))).mode().detach()]
764
+ out = [z, cond]
765
+
766
+ # domain vector
767
+ domain_ids = super().get_input(batch, "label").to(self.device).reshape(-1) # batch, 1
768
+ if bs is not None:
769
+ domain_ids = domain_ids[:bs]
770
+ cond["c_adm"] = domain_ids.long()
771
+
772
+ # print(f'conditioning shapes: z{z.shape}, encoder_posterior{encoder_posterior.mode().shape} cond["c_concat"]{cond["c_concat"][0].shape}')
773
+ if return_first_stage_outputs:
774
+ xrec = self.decode_first_stage(z)
775
+ out.extend([x, xrec])
776
+ if return_original_cond:
777
+ out.append(xc)
778
+ return out
779
+
780
+ # @torch.no_grad()
781
+ def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
782
+ if predict_cids:
783
+ if z.dim() == 4:
784
+ z = torch.argmax(z.exp(), dim=1).long()
785
+ z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
786
+ z = rearrange(z, 'b h w c -> b c h w').contiguous()
787
+
788
+ z = 1. / self.scale_factor * z
789
+
790
+ if hasattr(self, "split_input_params"):
791
+ if self.split_input_params["patch_distributed_vq"]:
792
+ ks = self.split_input_params["ks"] # eg. (128, 128)
793
+ stride = self.split_input_params["stride"] # eg. (64, 64)
794
+ uf = self.split_input_params["vqf"]
795
+ bs, nc, h, w = z.shape
796
+ if ks[0] > h or ks[1] > w:
797
+ ks = (min(ks[0], h), min(ks[1], w))
798
+ print("reducing Kernel")
799
+
800
+ if stride[0] > h or stride[1] > w:
801
+ stride = (min(stride[0], h), min(stride[1], w))
802
+ print("reducing stride")
803
+
804
+ fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
805
+
806
+ z = unfold(z) # (bn, nc * prod(**ks), L)
807
+ # 1. Reshape to img shape
808
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
809
+
810
+ # 2. apply model loop over last dim
811
+ if isinstance(self.first_stage_model, VQModelInterface):
812
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
813
+ force_not_quantize=predict_cids or force_not_quantize)
814
+ for i in range(z.shape[-1])]
815
+ else:
816
+
817
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
818
+ for i in range(z.shape[-1])]
819
+
820
+ o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
821
+ o = o * weighting
822
+ # Reverse 1. reshape to img shape
823
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
824
+ # stitch crops together
825
+ decoded = fold(o)
826
+ decoded = decoded / normalization # norm is shape (1, 1, h, w)
827
+ return decoded
828
+ else:
829
+ if isinstance(self.first_stage_model, VQModelInterface):
830
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
831
+ else:
832
+ return self.first_stage_model.decode(z)
833
+
834
+ else:
835
+ if isinstance(self.first_stage_model, VQModelInterface):
836
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
837
+ else:
838
+ return self.first_stage_model.decode(z)
839
+
840
+ @torch.no_grad()
841
+ def encode_first_stage(self, x):
842
+ if hasattr(self, "split_input_params"):
843
+ if self.split_input_params["patch_distributed_vq"]:
844
+ ks = self.split_input_params["ks"] # eg. (128, 128)
845
+ stride = self.split_input_params["stride"] # eg. (64, 64)
846
+ df = self.split_input_params["vqf"]
847
+ self.split_input_params['original_image_size'] = x.shape[-2:]
848
+ bs, nc, h, w = x.shape
849
+ if ks[0] > h or ks[1] > w:
850
+ ks = (min(ks[0], h), min(ks[1], w))
851
+ print("reducing Kernel")
852
+
853
+ if stride[0] > h or stride[1] > w:
854
+ stride = (min(stride[0], h), min(stride[1], w))
855
+ print("reducing stride")
856
+
857
+ fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df)
858
+ z = unfold(x) # (bn, nc * prod(**ks), L)
859
+ # Reshape to img shape
860
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
861
+
862
+ output_list = [self.first_stage_model.encode(z[:, :, :, :, i])
863
+ for i in range(z.shape[-1])]
864
+
865
+ o = torch.stack(output_list, axis=-1)
866
+ o = o * weighting
867
+
868
+ # Reverse reshape to img shape
869
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
870
+ # stitch crops together
871
+ decoded = fold(o)
872
+ decoded = decoded / normalization
873
+ return decoded
874
+
875
+ else:
876
+ return self.first_stage_model.encode(x)
877
+ else:
878
+ return self.first_stage_model.encode(x)
879
+
880
+ def shared_step(self, batch, **kwargs):
881
+ x, c = self.get_input(batch, self.first_stage_key)
882
+ loss = self(x, c)
883
+ return loss
884
+
885
+ def forward(self, x, c, *args, **kwargs):
886
+ t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
887
+ if self.model.conditioning_key is not None:
888
+ assert c is not None
889
+ # if self.cond_stage_trainable:
890
+ # c = self.get_learned_conditioning(c)
891
+ if self.shorten_cond_schedule: # TODO: drop this option
892
+ tc = self.cond_ids[t].to(self.device)
893
+ c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
894
+ return self.p_losses(x, c, t, *args, **kwargs)
895
+
896
+ def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset
897
+ def rescale_bbox(bbox):
898
+ x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2])
899
+ y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3])
900
+ w = min(bbox[2] / crop_coordinates[2], 1 - x0)
901
+ h = min(bbox[3] / crop_coordinates[3], 1 - y0)
902
+ return x0, y0, w, h
903
+
904
+ return [rescale_bbox(b) for b in bboxes]
905
+
906
+ def apply_model(self, x_noisy, t, cond, return_ids=False):
907
+
908
+ if isinstance(cond, dict):
909
+ # hybrid case, cond is exptected to be a dict
910
+ pass
911
+ else:
912
+ if not isinstance(cond, list):
913
+ cond = [cond]
914
+ key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
915
+ cond = {key: cond}
916
+
917
+ if hasattr(self, "split_input_params"):
918
+ assert len(cond) == 1 # todo can only deal with one conditioning atm
919
+ assert not return_ids
920
+ ks = self.split_input_params["ks"] # eg. (128, 128)
921
+ stride = self.split_input_params["stride"] # eg. (64, 64)
922
+
923
+ h, w = x_noisy.shape[-2:]
924
+
925
+ fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride)
926
+
927
+ z = unfold(x_noisy) # (bn, nc * prod(**ks), L)
928
+ # Reshape to img shape
929
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
930
+ z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])]
931
+
932
+ if self.cond_stage_key in ["image", "LR_image", "segmentation",
933
+ 'bbox_img'] and self.model.conditioning_key: # todo check for completeness
934
+ c_key = next(iter(cond.keys())) # get key
935
+ c = next(iter(cond.values())) # get value
936
+ assert (len(c) == 1) # todo extend to list with more than one elem
937
+ c = c[0] # get element
938
+
939
+ c = unfold(c)
940
+ c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L )
941
+
942
+ cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])]
943
+
944
+ elif self.cond_stage_key == 'coordinates_bbox':
945
+ assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size'
946
+
947
+ # assuming padding of unfold is always 0 and its dilation is always 1
948
+ n_patches_per_row = int((w - ks[0]) / stride[0] + 1)
949
+ full_img_h, full_img_w = self.split_input_params['original_image_size']
950
+ # as we are operating on latents, we need the factor from the original image size to the
951
+ # spatial latent size to properly rescale the crops for regenerating the bbox annotations
952
+ num_downs = self.first_stage_model.encoder.num_resolutions - 1
953
+ rescale_latent = 2 ** (num_downs)
954
+
955
+ # get top left postions of patches as conforming for the bbbox tokenizer, therefore we
956
+ # need to rescale the tl patch coordinates to be in between (0,1)
957
+ tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w,
958
+ rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h)
959
+ for patch_nr in range(z.shape[-1])]
960
+
961
+ # patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w)
962
+ patch_limits = [(x_tl, y_tl,
963
+ rescale_latent * ks[0] / full_img_w,
964
+ rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates]
965
+ # patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates]
966
+
967
+ # tokenize crop coordinates for the bounding boxes of the respective patches
968
+ patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device)
969
+ for bbox in patch_limits] # list of length l with tensors of shape (1, 2)
970
+ # cut tknzd crop position from conditioning
971
+ assert isinstance(cond, dict), 'cond must be dict to be fed into model'
972
+ cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device)
973
+
974
+ adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd])
975
+ adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n')
976
+ adapted_cond = self.get_learned_conditioning(adapted_cond)
977
+ adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1])
978
+
979
+ cond_list = [{'c_crossattn': [e]} for e in adapted_cond]
980
+
981
+ else:
982
+ cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient
983
+
984
+ # apply model by loop over crops
985
+ output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])]
986
+ assert not isinstance(output_list[0],
987
+ tuple) # todo cant deal with multiple model outputs check this never happens
988
+
989
+ o = torch.stack(output_list, axis=-1)
990
+ o = o * weighting
991
+ # Reverse reshape to img shape
992
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
993
+ # stitch crops together
994
+ x_recon = fold(o) / normalization
995
+
996
+ else:
997
+ x_recon = self.model(x_noisy, t, **cond)
998
+
999
+ if isinstance(x_recon, tuple) and not return_ids:
1000
+ return x_recon[0]
1001
+ else:
1002
+ return x_recon
1003
+
1004
+ def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
1005
+ return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
1006
+ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
1007
+
1008
+ def _prior_bpd(self, x_start):
1009
+ """
1010
+ Get the prior KL term for the variational lower-bound, measured in
1011
+ bits-per-dim.
1012
+ This term can't be optimized, as it only depends on the encoder.
1013
+ :param x_start: the [N x C x ...] tensor of inputs.
1014
+ :return: a batch of [N] KL values (in bits), one per batch element.
1015
+ """
1016
+ batch_size = x_start.shape[0]
1017
+ t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
1018
+ qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
1019
+ kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
1020
+ return mean_flat(kl_prior) / np.log(2.0)
1021
+
1022
+ def p_losses(self, x_start, cond, t, noise=None):
1023
+ noise = default(noise, lambda: torch.randn_like(x_start))
1024
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
1025
+ model_output = self.apply_model(x_noisy, t, cond)
1026
+
1027
+ loss_dict = {}
1028
+ prefix = 'train' if self.training else 'val'
1029
+
1030
+ if self.parameterization == "x0":
1031
+ target = x_start
1032
+ elif self.parameterization == "eps":
1033
+ target = noise
1034
+ else:
1035
+ raise NotImplementedError()
1036
+
1037
+ loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
1038
+ loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
1039
+
1040
+ logvar_t = self.logvar[t].to(self.device)
1041
+ loss = loss_simple / torch.exp(logvar_t) + logvar_t
1042
+ # loss = loss_simple / torch.exp(self.logvar) + self.logvar
1043
+ if self.learn_logvar:
1044
+ loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
1045
+ loss_dict.update({'logvar': self.logvar.data.mean()})
1046
+
1047
+ loss = self.l_simple_weight * loss.mean()
1048
+
1049
+ loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
1050
+ loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
1051
+ loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
1052
+ loss += (self.original_elbo_weight * loss_vlb)
1053
+ loss_dict.update({f'{prefix}/loss': loss})
1054
+
1055
+ return loss, loss_dict
1056
+
1057
+ def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
1058
+ return_x0=False, score_corrector=None, corrector_kwargs=None):
1059
+ t_in = t
1060
+ model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
1061
+
1062
+ if score_corrector is not None:
1063
+ assert self.parameterization == "eps"
1064
+ model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
1065
+
1066
+ if return_codebook_ids:
1067
+ model_out, logits = model_out
1068
+
1069
+ if self.parameterization == "eps":
1070
+ x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
1071
+ elif self.parameterization == "x0":
1072
+ x_recon = model_out
1073
+ else:
1074
+ raise NotImplementedError()
1075
+
1076
+ if clip_denoised:
1077
+ x_recon.clamp_(-1., 1.)
1078
+ if quantize_denoised:
1079
+ x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
1080
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
1081
+ if return_codebook_ids:
1082
+ return model_mean, posterior_variance, posterior_log_variance, logits
1083
+ elif return_x0:
1084
+ return model_mean, posterior_variance, posterior_log_variance, x_recon
1085
+ else:
1086
+ return model_mean, posterior_variance, posterior_log_variance
1087
+
1088
+ @torch.no_grad()
1089
+ def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
1090
+ return_codebook_ids=False, quantize_denoised=False, return_x0=False,
1091
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
1092
+ b, *_, device = *x.shape, x.device
1093
+ outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
1094
+ return_codebook_ids=return_codebook_ids,
1095
+ quantize_denoised=quantize_denoised,
1096
+ return_x0=return_x0,
1097
+ score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
1098
+ if return_codebook_ids:
1099
+ raise DeprecationWarning("Support dropped.")
1100
+ model_mean, _, model_log_variance, logits = outputs
1101
+ elif return_x0:
1102
+ model_mean, _, model_log_variance, x0 = outputs
1103
+ else:
1104
+ model_mean, _, model_log_variance = outputs
1105
+
1106
+ noise = noise_like(x.shape, device, repeat_noise) * temperature
1107
+ if noise_dropout > 0.:
1108
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
1109
+ # no noise when t == 0
1110
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
1111
+
1112
+ if return_codebook_ids:
1113
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
1114
+ if return_x0:
1115
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
1116
+ else:
1117
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
1118
+
1119
+ @torch.no_grad()
1120
+ def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
1121
+ img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
1122
+ score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
1123
+ log_every_t=None):
1124
+ if not log_every_t:
1125
+ log_every_t = self.log_every_t
1126
+ timesteps = self.num_timesteps
1127
+ if batch_size is not None:
1128
+ b = batch_size if batch_size is not None else shape[0]
1129
+ shape = [batch_size] + list(shape)
1130
+ else:
1131
+ b = batch_size = shape[0]
1132
+ if x_T is None:
1133
+ img = torch.randn(shape, device=self.device)
1134
+ else:
1135
+ img = x_T
1136
+ intermediates = []
1137
+ if cond is not None:
1138
+ if isinstance(cond, dict):
1139
+ cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
1140
+ list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
1141
+ else:
1142
+ cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
1143
+
1144
+ if start_T is not None:
1145
+ timesteps = min(timesteps, start_T)
1146
+ iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
1147
+ total=timesteps) if verbose else reversed(
1148
+ range(0, timesteps))
1149
+ if type(temperature) == float:
1150
+ temperature = [temperature] * timesteps
1151
+
1152
+ for i in iterator:
1153
+ ts = torch.full((b,), i, device=self.device, dtype=torch.long)
1154
+ if self.shorten_cond_schedule:
1155
+ assert self.model.conditioning_key != 'hybrid'
1156
+ tc = self.cond_ids[ts].to(cond.device)
1157
+ cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
1158
+
1159
+ img, x0_partial = self.p_sample(img, cond, ts,
1160
+ clip_denoised=self.clip_denoised,
1161
+ quantize_denoised=quantize_denoised, return_x0=True,
1162
+ temperature=temperature[i], noise_dropout=noise_dropout,
1163
+ score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
1164
+ if mask is not None:
1165
+ assert x0 is not None
1166
+ img_orig = self.q_sample(x0, ts)
1167
+ img = img_orig * mask + (1. - mask) * img
1168
+
1169
+ if i % log_every_t == 0 or i == timesteps - 1:
1170
+ intermediates.append(x0_partial)
1171
+ if callback: callback(i)
1172
+ if img_callback: img_callback(img, i)
1173
+ return img, intermediates
1174
+
1175
+ @torch.no_grad()
1176
+ def p_sample_loop(self, cond, shape, return_intermediates=False,
1177
+ x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
1178
+ mask=None, x0=None, img_callback=None, start_T=None,
1179
+ log_every_t=None):
1180
+
1181
+ if not log_every_t:
1182
+ log_every_t = self.log_every_t
1183
+ device = self.betas.device
1184
+ b = shape[0]
1185
+ if x_T is None:
1186
+ img = torch.randn(shape, device=device)
1187
+ else:
1188
+ img = x_T
1189
+
1190
+ intermediates = [img]
1191
+ if timesteps is None:
1192
+ timesteps = self.num_timesteps
1193
+
1194
+ if start_T is not None:
1195
+ timesteps = min(timesteps, start_T)
1196
+ iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
1197
+ range(0, timesteps))
1198
+
1199
+ if mask is not None:
1200
+ assert x0 is not None
1201
+ assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
1202
+
1203
+ for i in iterator:
1204
+ ts = torch.full((b,), i, device=device, dtype=torch.long)
1205
+ if self.shorten_cond_schedule:
1206
+ assert self.model.conditioning_key != 'hybrid'
1207
+ tc = self.cond_ids[ts].to(cond.device)
1208
+ cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
1209
+
1210
+ img = self.p_sample(img, cond, ts,
1211
+ clip_denoised=self.clip_denoised,
1212
+ quantize_denoised=quantize_denoised)
1213
+ if mask is not None:
1214
+ img_orig = self.q_sample(x0, ts)
1215
+ img = img_orig * mask + (1. - mask) * img
1216
+
1217
+ if i % log_every_t == 0 or i == timesteps - 1:
1218
+ intermediates.append(img)
1219
+ if callback: callback(i)
1220
+ if img_callback: img_callback(img, i)
1221
+
1222
+ if return_intermediates:
1223
+ return img, intermediates
1224
+ return img
1225
+
1226
+ @torch.no_grad()
1227
+ def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
1228
+ verbose=True, timesteps=None, quantize_denoised=False,
1229
+ mask=None, x0=None, shape=None,**kwargs):
1230
+ if shape is None:
1231
+ shape = (batch_size, self.channels, self.image_size, self.image_size)
1232
+ if cond is not None:
1233
+ if isinstance(cond, dict):
1234
+ cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
1235
+ list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
1236
+ else:
1237
+ cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
1238
+ return self.p_sample_loop(cond,
1239
+ shape,
1240
+ return_intermediates=return_intermediates, x_T=x_T,
1241
+ verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
1242
+ mask=mask, x0=x0)
1243
+
1244
+ @torch.no_grad()
1245
+ def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
1246
+ if ddim:
1247
+ ddim_sampler = DDIMSampler(self)
1248
+ shape = (self.channels, self.image_size, self.image_size)
1249
+ samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size,
1250
+ shape, cond, verbose=False, **kwargs)
1251
+
1252
+ else:
1253
+ samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
1254
+ return_intermediates=True, **kwargs)
1255
+
1256
+ return samples, intermediates
1257
+
1258
+ @torch.no_grad()
1259
+ def get_unconditional_conditioning(self, batch_size, null_label=None, image_size=512):
1260
+ if null_label is not None:
1261
+ xc = null_label
1262
+ if isinstance(xc, ListConfig):
1263
+ xc = list(xc)
1264
+ if isinstance(xc, dict) or isinstance(xc, list):
1265
+ c = self.get_learned_conditioning(xc)
1266
+ else:
1267
+ if hasattr(xc, "to"):
1268
+ xc = xc.to(self.device)
1269
+ c = self.get_learned_conditioning(xc)
1270
+ else:
1271
+ # todo: get null label from cond_stage_model
1272
+ raise NotImplementedError()
1273
+ c = repeat(c, '1 ... -> b ...', b=batch_size).to(self.device)
1274
+ cond = {}
1275
+ cond["c_crossattn"] = [c]
1276
+ cond["c_concat"] = [torch.zeros([batch_size, 4, image_size // 8, image_size // 8]).to(self.device)]
1277
+ if not self.cat_key is None:
1278
+ cond["c_concat"] += [torch.zeros([batch_size, 4, image_size // 8, image_size // 8]).to(self.device)]
1279
+
1280
+ return cond
1281
+
1282
+ def test_step(self, batch, batch_idx):
1283
+ "Testing in image logger. We will save results in the future"
1284
+ pass
1285
+
1286
+ @torch.no_grad()
1287
+ def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
1288
+ quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
1289
+ plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
1290
+ use_ema_scope=True,
1291
+ **kwargs):
1292
+ ema_scope = self.ema_scope if use_ema_scope else nullcontext
1293
+ use_ddim = ddim_steps is not None
1294
+
1295
+ log = dict()
1296
+ z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
1297
+ return_first_stage_outputs=True,
1298
+ force_c_encode=True,
1299
+ return_original_cond=True,
1300
+ bs=N)
1301
+ N = min(x.shape[0], N)
1302
+ n_row = min(x.shape[0], n_row)
1303
+ log["inputs"] = x
1304
+ log["reconstruction"] = xrec
1305
+ if self.model.conditioning_key is not None:
1306
+ if hasattr(self.cond_stage_model, "decode"):
1307
+ xc = self.cond_stage_model.decode(c)
1308
+ log["conditioning"] = xc
1309
+ elif self.cond_stage_key in ["caption", "txt"]:
1310
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2]//25)
1311
+ log["conditioning"] = xc
1312
+ elif self.cond_stage_key == 'class_label':
1313
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2]//25)
1314
+ log['conditioning'] = xc
1315
+ elif isimage(xc):
1316
+ log["conditioning"] = xc
1317
+ if ismap(xc):
1318
+ log["original_conditioning"] = self.to_rgb(xc)
1319
+
1320
+ if plot_diffusion_rows:
1321
+ # get diffusion row
1322
+ diffusion_row = list()
1323
+ z_start = z[:n_row]
1324
+ for t in range(self.num_timesteps):
1325
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
1326
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
1327
+ t = t.to(self.device).long()
1328
+ noise = torch.randn_like(z_start)
1329
+ z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
1330
+ diffusion_row.append(self.decode_first_stage(z_noisy))
1331
+
1332
+ diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
1333
+ diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
1334
+ diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
1335
+ diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
1336
+ log["diffusion_row"] = diffusion_grid
1337
+
1338
+ if sample:
1339
+ # get denoise row
1340
+ with ema_scope("Sampling"):
1341
+ samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
1342
+ ddim_steps=ddim_steps,eta=ddim_eta)
1343
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
1344
+ x_samples = self.decode_first_stage(samples)
1345
+ log["samples"] = x_samples
1346
+ if plot_denoise_rows:
1347
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
1348
+ log["denoise_row"] = denoise_grid
1349
+
1350
+ if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
1351
+ self.first_stage_model, IdentityFirstStage):
1352
+ # also display when quantizing x0 while sampling
1353
+ with ema_scope("Plotting Quantized Denoised"):
1354
+ samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
1355
+ ddim_steps=ddim_steps,eta=ddim_eta,
1356
+ quantize_denoised=True)
1357
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
1358
+ # quantize_denoised=True)
1359
+ x_samples = self.decode_first_stage(samples.to(self.device))
1360
+ log["samples_x0_quantized"] = x_samples
1361
+
1362
+ if not isinstance(unconditional_guidance_scale, list):
1363
+ unconditional_guidance_scale = [unconditional_guidance_scale]
1364
+ for cfg_scale in unconditional_guidance_scale:
1365
+ if cfg_scale <= 1.0:
1366
+ break
1367
+ uc = self.get_unconditional_conditioning(N, unconditional_guidance_label, image_size=x.shape[-1])
1368
+ uc['c_adm'] = c['c_adm']
1369
+ # uc = torch.zeros_like(c)
1370
+ with ema_scope("Sampling with classifier-free guidance"):
1371
+ samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1372
+ ddim_steps=ddim_steps, eta=ddim_eta,
1373
+ unconditional_guidance_scale=cfg_scale,
1374
+ unconditional_conditioning=uc,
1375
+ )
1376
+ x_samples_cfg = self.decode_first_stage(samples_cfg)
1377
+ log[f"samples_cfg_scale_{cfg_scale:.2f}"] = x_samples_cfg
1378
+
1379
+ if inpaint:
1380
+ # make a simple center square
1381
+ b, h, w = z.shape[0], z.shape[2], z.shape[3]
1382
+ mask = torch.ones(N, h, w).to(self.device)
1383
+ # zeros will be filled in
1384
+ mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
1385
+ mask = mask[:, None, ...]
1386
+ with ema_scope("Plotting Inpaint"):
1387
+
1388
+ samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta,
1389
+ ddim_steps=ddim_steps, x0=z[:N], mask=mask)
1390
+ x_samples = self.decode_first_stage(samples.to(self.device))
1391
+ log["samples_inpainting"] = x_samples
1392
+ log["mask"] = mask
1393
+
1394
+ # outpaint
1395
+ mask = 1. - mask
1396
+ with ema_scope("Plotting Outpaint"):
1397
+ samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta,
1398
+ ddim_steps=ddim_steps, x0=z[:N], mask=mask)
1399
+ x_samples = self.decode_first_stage(samples.to(self.device))
1400
+ log["samples_outpainting"] = x_samples
1401
+
1402
+ if plot_progressive_rows:
1403
+ with ema_scope("Plotting Progressives"):
1404
+ img, progressives = self.progressive_denoising(c,
1405
+ shape=(self.channels, self.image_size, self.image_size),
1406
+ batch_size=N)
1407
+ prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
1408
+ log["progressive_row"] = prog_row
1409
+
1410
+ if return_keys:
1411
+ if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
1412
+ return log
1413
+ else:
1414
+ return {key: log[key] for key in return_keys}
1415
+ return log
1416
+
1417
+ def configure_optimizers(self):
1418
+ lr = self.learning_rate
1419
+ params = []
1420
+ if self.unet_trainable == "attn":
1421
+ print("Training only unet attention layers")
1422
+ for n, m in self.model.named_modules():
1423
+ if isinstance(m, CrossAttention) and n.endswith('attn2'):
1424
+ params.extend(m.parameters())
1425
+ if self.unet_trainable == "conv_in":
1426
+ print("Training only unet input conv layers")
1427
+ params = list(self.model.diffusion_model.input_blocks[0][0].parameters())
1428
+ elif self.unet_trainable is True or self.unet_trainable == "all":
1429
+ print("Training the full unet")
1430
+ params = list(self.model.parameters())
1431
+ else:
1432
+ raise ValueError(f"Unrecognised setting for unet_trainable: {self.unet_trainable}")
1433
+
1434
+ if self.cond_stage_trainable:
1435
+ print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
1436
+ params = params + list(self.cond_stage_model.parameters())
1437
+ if self.learn_logvar:
1438
+ print('Diffusion model optimizing logvar')
1439
+ params.append(self.logvar)
1440
+
1441
+ # if self.cc_projection is not None:
1442
+ # params = params + list(self.cc_projection.parameters())
1443
+ # print('========== optimizing for cc projection weight ==========')
1444
+
1445
+ opt = torch.optim.AdamW([{"params": self.model.parameters(), "lr": lr},
1446
+ ], lr=lr)
1447
+ if self.use_scheduler:
1448
+ assert 'target' in self.scheduler_config
1449
+ scheduler = instantiate_from_config(self.scheduler_config)
1450
+
1451
+ print("Setting up LambdaLR scheduler...")
1452
+ scheduler = [
1453
+ {
1454
+ 'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
1455
+ 'interval': 'step',
1456
+ 'frequency': 1
1457
+ }]
1458
+ return [opt], scheduler
1459
+ return opt
1460
+
1461
+ @torch.no_grad()
1462
+ def to_rgb(self, x):
1463
+ x = x.float()
1464
+ if not hasattr(self, "colorize"):
1465
+ self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
1466
+ x = nn.functional.conv2d(x, weight=self.colorize)
1467
+ x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
1468
+ return x
1469
+
1470
+
1471
+ class DiffusionWrapper(pl.LightningModule):
1472
+ def __init__(self, diff_model_config, conditioning_key):
1473
+ super().__init__()
1474
+ self.diffusion_model = instantiate_from_config(diff_model_config)
1475
+ self.conditioning_key = conditioning_key
1476
+ assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm', 'hybrid-adm']
1477
+
1478
+ def forward(self, x, t, c_concat: list = None, c_crossattn: list = None, c_adm=None):
1479
+ if self.conditioning_key is None:
1480
+ out = self.diffusion_model(x, t)
1481
+ elif self.conditioning_key == 'concat':
1482
+ xc = torch.cat([x] + c_concat, dim=1)
1483
+ out = self.diffusion_model(xc, t)
1484
+ elif self.conditioning_key == 'crossattn':
1485
+ # c_crossattn dimension: torch.Size([8, 1, 768]) 1
1486
+ # cc dimension: torch.Size([8, 1, 768]
1487
+ cc = torch.cat(c_crossattn, 1)
1488
+ out = self.diffusion_model(x, t, context=cc)
1489
+ elif self.conditioning_key == 'hybrid':
1490
+ xc = torch.cat([x] + c_concat, dim=1)
1491
+ cc = torch.cat(c_crossattn, 1)
1492
+ out = self.diffusion_model(xc, t, context=cc)
1493
+ elif self.conditioning_key == 'hybrid-adm':
1494
+ assert c_adm is not None
1495
+ xc = torch.cat([x] + c_concat, dim=1)
1496
+ cc = torch.cat(c_crossattn, 1)
1497
+ out = self.diffusion_model(xc, t, context=cc, y=c_adm)
1498
+ elif self.conditioning_key == 'adm':
1499
+ cc = c_crossattn[0]
1500
+ out = self.diffusion_model(x, t, y=cc)
1501
+ else:
1502
+ raise NotImplementedError()
1503
+
1504
+ return out
1505
+
1506
+
1507
+ class LatentUpscaleDiffusion(LatentDiffusion):
1508
+ def __init__(self, *args, low_scale_config, low_scale_key="LR", **kwargs):
1509
+ super().__init__(*args, **kwargs)
1510
+ # assumes that neither the cond_stage nor the low_scale_model contain trainable params
1511
+ assert not self.cond_stage_trainable
1512
+ self.instantiate_low_stage(low_scale_config)
1513
+ self.low_scale_key = low_scale_key
1514
+
1515
+ def instantiate_low_stage(self, config):
1516
+ model = instantiate_from_config(config)
1517
+ self.low_scale_model = model.eval()
1518
+ self.low_scale_model.train = disabled_train
1519
+ for param in self.low_scale_model.parameters():
1520
+ param.requires_grad = False
1521
+
1522
+ @torch.no_grad()
1523
+ def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False):
1524
+ if not log_mode:
1525
+ z, c = super().get_input(batch, k, force_c_encode=True, bs=bs)
1526
+ else:
1527
+ z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
1528
+ force_c_encode=True, return_original_cond=True, bs=bs)
1529
+ x_low = batch[self.low_scale_key][:bs]
1530
+ x_low = rearrange(x_low, 'b h w c -> b c h w')
1531
+ x_low = x_low.to(memory_format=torch.contiguous_format).float()
1532
+ zx, noise_level = self.low_scale_model(x_low)
1533
+ all_conds = {"c_concat": [zx], "c_crossattn": [c], "c_adm": noise_level}
1534
+ #import pudb; pu.db
1535
+ if log_mode:
1536
+ # TODO: maybe disable if too expensive
1537
+ interpretability = False
1538
+ if interpretability:
1539
+ zx = zx[:, :, ::2, ::2]
1540
+ x_low_rec = self.low_scale_model.decode(zx)
1541
+ return z, all_conds, x, xrec, xc, x_low, x_low_rec, noise_level
1542
+ return z, all_conds
1543
+
1544
+ @torch.no_grad()
1545
+ def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
1546
+ plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True,
1547
+ unconditional_guidance_scale=1., unconditional_guidance_label=None, use_ema_scope=True,
1548
+ **kwargs):
1549
+ ema_scope = self.ema_scope if use_ema_scope else nullcontext
1550
+ use_ddim = ddim_steps is not None
1551
+
1552
+ log = dict()
1553
+ z, c, x, xrec, xc, x_low, x_low_rec, noise_level = self.get_input(batch, self.first_stage_key, bs=N,
1554
+ log_mode=True)
1555
+ N = min(x.shape[0], N)
1556
+ n_row = min(x.shape[0], n_row)
1557
+ log["inputs"] = x
1558
+ log["reconstruction"] = xrec
1559
+ log["x_lr"] = x_low
1560
+ log[f"x_lr_rec_@noise_levels{'-'.join(map(lambda x: str(x), list(noise_level.cpu().numpy())))}"] = x_low_rec
1561
+ if self.model.conditioning_key is not None:
1562
+ if hasattr(self.cond_stage_model, "decode"):
1563
+ xc = self.cond_stage_model.decode(c)
1564
+ log["conditioning"] = xc
1565
+ elif self.cond_stage_key in ["caption", "txt"]:
1566
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2]//25)
1567
+ log["conditioning"] = xc
1568
+ elif self.cond_stage_key == 'class_label':
1569
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2]//25)
1570
+ log['conditioning'] = xc
1571
+ elif isimage(xc):
1572
+ log["conditioning"] = xc
1573
+ if ismap(xc):
1574
+ log["original_conditioning"] = self.to_rgb(xc)
1575
+
1576
+ if plot_diffusion_rows:
1577
+ # get diffusion row
1578
+ diffusion_row = list()
1579
+ z_start = z[:n_row]
1580
+ for t in range(self.num_timesteps):
1581
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
1582
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
1583
+ t = t.to(self.device).long()
1584
+ noise = torch.randn_like(z_start)
1585
+ z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
1586
+ diffusion_row.append(self.decode_first_stage(z_noisy))
1587
+
1588
+ diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
1589
+ diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
1590
+ diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
1591
+ diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
1592
+ log["diffusion_row"] = diffusion_grid
1593
+
1594
+ if sample:
1595
+ # get denoise row
1596
+ with ema_scope("Sampling"):
1597
+ samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1598
+ ddim_steps=ddim_steps, eta=ddim_eta)
1599
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
1600
+ x_samples = self.decode_first_stage(samples)
1601
+ log["samples"] = x_samples
1602
+ if plot_denoise_rows:
1603
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
1604
+ log["denoise_row"] = denoise_grid
1605
+
1606
+ if unconditional_guidance_scale > 1.0:
1607
+ uc_tmp = self.get_unconditional_conditioning(N, unconditional_guidance_label)
1608
+ # TODO explore better "unconditional" choices for the other keys
1609
+ # maybe guide away from empty text label and highest noise level and maximally degraded zx?
1610
+ uc = dict()
1611
+ for k in c:
1612
+ if k == "c_crossattn":
1613
+ assert isinstance(c[k], list) and len(c[k]) == 1
1614
+ uc[k] = [uc_tmp]
1615
+ elif k == "c_adm": # todo: only run with text-based guidance?
1616
+ assert isinstance(c[k], torch.Tensor)
1617
+ uc[k] = torch.ones_like(c[k]) * self.low_scale_model.max_noise_level
1618
+ elif isinstance(c[k], list):
1619
+ uc[k] = [c[k][i] for i in range(len(c[k]))]
1620
+ else:
1621
+ uc[k] = c[k]
1622
+
1623
+ with ema_scope("Sampling with classifier-free guidance"):
1624
+ samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1625
+ ddim_steps=ddim_steps, eta=ddim_eta,
1626
+ unconditional_guidance_scale=unconditional_guidance_scale,
1627
+ unconditional_conditioning=uc,
1628
+ )
1629
+ x_samples_cfg = self.decode_first_stage(samples_cfg)
1630
+ log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
1631
+
1632
+ if plot_progressive_rows:
1633
+ with ema_scope("Plotting Progressives"):
1634
+ img, progressives = self.progressive_denoising(c,
1635
+ shape=(self.channels, self.image_size, self.image_size),
1636
+ batch_size=N)
1637
+ prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
1638
+ log["progressive_row"] = prog_row
1639
+
1640
+ return log
1641
+
1642
+
1643
+ class LatentInpaintDiffusion(LatentDiffusion):
1644
+ """
1645
+ can either run as pure inpainting model (only concat mode) or with mixed conditionings,
1646
+ e.g. mask as concat and text via cross-attn.
1647
+ To disable finetuning mode, set finetune_keys to None
1648
+ """
1649
+ def __init__(self,
1650
+ finetune_keys=("model.diffusion_model.input_blocks.0.0.weight",
1651
+ "model_ema.diffusion_modelinput_blocks00weight"
1652
+ ),
1653
+ concat_keys=("mask", "masked_image"),
1654
+ masked_image_key="masked_image",
1655
+ keep_finetune_dims=4, # if model was trained without concat mode before and we would like to keep these channels
1656
+ c_concat_log_start=None, # to log reconstruction of c_concat codes
1657
+ c_concat_log_end=None,
1658
+ *args, **kwargs
1659
+ ):
1660
+ ckpt_path = kwargs.pop("ckpt_path", None)
1661
+ ignore_keys = kwargs.pop("ignore_keys", list())
1662
+ super().__init__(*args, **kwargs)
1663
+ self.masked_image_key = masked_image_key
1664
+ assert self.masked_image_key in concat_keys
1665
+ self.finetune_keys = finetune_keys
1666
+ self.concat_keys = concat_keys
1667
+ self.keep_dims = keep_finetune_dims
1668
+ self.c_concat_log_start = c_concat_log_start
1669
+ self.c_concat_log_end = c_concat_log_end
1670
+ if exists(self.finetune_keys): assert exists(ckpt_path), 'can only finetune from a given checkpoint'
1671
+ if exists(ckpt_path):
1672
+ self.init_from_ckpt(ckpt_path, ignore_keys)
1673
+
1674
+ def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
1675
+ sd = torch.load(path, map_location="cpu")
1676
+ if "state_dict" in list(sd.keys()):
1677
+ sd = sd["state_dict"]
1678
+ keys = list(sd.keys())
1679
+ for k in keys:
1680
+ for ik in ignore_keys:
1681
+ if k.startswith(ik):
1682
+ print("Deleting key {} from state_dict.".format(k))
1683
+ del sd[k]
1684
+
1685
+ # make it explicit, finetune by including extra input channels
1686
+ if exists(self.finetune_keys) and k in self.finetune_keys:
1687
+ new_entry = None
1688
+ for name, param in self.named_parameters():
1689
+ if name in self.finetune_keys:
1690
+ print(f"modifying key '{name}' and keeping its original {self.keep_dims} (channels) dimensions only")
1691
+ new_entry = torch.zeros_like(param) # zero init
1692
+ assert exists(new_entry), 'did not find matching parameter to modify'
1693
+ new_entry[:, :self.keep_dims, ...] = sd[k]
1694
+ sd[k] = new_entry
1695
+
1696
+ missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(sd, strict=False)
1697
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
1698
+ if len(missing) > 0:
1699
+ print(f"Missing Keys: {missing}")
1700
+ if len(unexpected) > 0:
1701
+ print(f"Unexpected Keys: {unexpected}")
1702
+
1703
+ @torch.no_grad()
1704
+ def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
1705
+ # note: restricted to non-trainable encoders currently
1706
+ assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for inpainting'
1707
+ z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
1708
+ force_c_encode=True, return_original_cond=True, bs=bs)
1709
+
1710
+ assert exists(self.concat_keys)
1711
+ c_cat = list()
1712
+ for ck in self.concat_keys:
1713
+ cc = rearrange(batch[ck], 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
1714
+ if bs is not None:
1715
+ cc = cc[:bs]
1716
+ cc = cc.to(self.device)
1717
+ bchw = z.shape
1718
+ if ck != self.masked_image_key:
1719
+ cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
1720
+ else:
1721
+ cc = self.get_first_stage_encoding(self.encode_first_stage(cc))
1722
+ c_cat.append(cc)
1723
+ c_cat = torch.cat(c_cat, dim=1)
1724
+ all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
1725
+ if return_first_stage_outputs:
1726
+ return z, all_conds, x, xrec, xc
1727
+ return z, all_conds
1728
+
1729
+ @torch.no_grad()
1730
+ def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
1731
+ quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
1732
+ plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
1733
+ use_ema_scope=True,
1734
+ **kwargs):
1735
+ ema_scope = self.ema_scope if use_ema_scope else nullcontext
1736
+ use_ddim = ddim_steps is not None
1737
+
1738
+ log = dict()
1739
+ z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, bs=N, return_first_stage_outputs=True)
1740
+ c_cat, c = c["c_concat"][0], c["c_crossattn"][0]
1741
+ N = min(x.shape[0], N)
1742
+ n_row = min(x.shape[0], n_row)
1743
+ log["inputs"] = x
1744
+ log["reconstruction"] = xrec
1745
+ if self.model.conditioning_key is not None:
1746
+ if hasattr(self.cond_stage_model, "decode"):
1747
+ xc = self.cond_stage_model.decode(c)
1748
+ log["conditioning"] = xc
1749
+ elif self.cond_stage_key in ["caption", "txt"]:
1750
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
1751
+ log["conditioning"] = xc
1752
+ elif self.cond_stage_key == 'class_label':
1753
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
1754
+ log['conditioning'] = xc
1755
+ elif isimage(xc):
1756
+ log["conditioning"] = xc
1757
+ if ismap(xc):
1758
+ log["original_conditioning"] = self.to_rgb(xc)
1759
+
1760
+ if not (self.c_concat_log_start is None and self.c_concat_log_end is None):
1761
+ log["c_concat_decoded"] = self.decode_first_stage(c_cat[:,self.c_concat_log_start:self.c_concat_log_end])
1762
+
1763
+ if plot_diffusion_rows:
1764
+ # get diffusion row
1765
+ diffusion_row = list()
1766
+ z_start = z[:n_row]
1767
+ for t in range(self.num_timesteps):
1768
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
1769
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
1770
+ t = t.to(self.device).long()
1771
+ noise = torch.randn_like(z_start)
1772
+ z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
1773
+ diffusion_row.append(self.decode_first_stage(z_noisy))
1774
+
1775
+ diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
1776
+ diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
1777
+ diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
1778
+ diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
1779
+ log["diffusion_row"] = diffusion_grid
1780
+
1781
+ if sample:
1782
+ # get denoise row
1783
+ with ema_scope("Sampling"):
1784
+ samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
1785
+ batch_size=N, ddim=use_ddim,
1786
+ ddim_steps=ddim_steps, eta=ddim_eta)
1787
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
1788
+ x_samples = self.decode_first_stage(samples)
1789
+ log["samples"] = x_samples
1790
+ if plot_denoise_rows:
1791
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
1792
+ log["denoise_row"] = denoise_grid
1793
+
1794
+ if unconditional_guidance_scale > 1.0:
1795
+ uc_cross = self.get_unconditional_conditioning(N, unconditional_guidance_label)
1796
+ uc_cat = c_cat
1797
+ uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
1798
+ with ema_scope("Sampling with classifier-free guidance"):
1799
+ samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
1800
+ batch_size=N, ddim=use_ddim,
1801
+ ddim_steps=ddim_steps, eta=ddim_eta,
1802
+ unconditional_guidance_scale=unconditional_guidance_scale,
1803
+ unconditional_conditioning=uc_full,
1804
+ )
1805
+ x_samples_cfg = self.decode_first_stage(samples_cfg)
1806
+ log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
1807
+
1808
+ log["masked_image"] = rearrange(batch["masked_image"],
1809
+ 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
1810
+ return log
1811
+
1812
+
1813
+ class Layout2ImgDiffusion(LatentDiffusion):
1814
+ # TODO: move all layout-specific hacks to this class
1815
+ def __init__(self, cond_stage_key, *args, **kwargs):
1816
+ assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"'
1817
+ super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs)
1818
+
1819
+ def log_images(self, batch, N=8, *args, **kwargs):
1820
+ logs = super().log_images(batch=batch, N=N, *args, **kwargs)
1821
+
1822
+ key = 'train' if self.training else 'validation'
1823
+ dset = self.trainer.datamodule.datasets[key]
1824
+ mapper = dset.conditional_builders[self.cond_stage_key]
1825
+
1826
+ bbox_imgs = []
1827
+ map_fn = lambda catno: dset.get_textual_label(dset.get_category_id(catno))
1828
+ for tknzd_bbox in batch[self.cond_stage_key][:N]:
1829
+ bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (256, 256))
1830
+ bbox_imgs.append(bboximg)
1831
+
1832
+ cond_img = torch.stack(bbox_imgs, dim=0)
1833
+ logs['bbox_image'] = cond_img
1834
+ return logs
1835
+
1836
+
1837
+ class SimpleUpscaleDiffusion(LatentDiffusion):
1838
+ def __init__(self, *args, low_scale_key="LR", **kwargs):
1839
+ super().__init__(*args, **kwargs)
1840
+ # assumes that neither the cond_stage nor the low_scale_model contain trainable params
1841
+ assert not self.cond_stage_trainable
1842
+ self.low_scale_key = low_scale_key
1843
+
1844
+ @torch.no_grad()
1845
+ def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False):
1846
+ if not log_mode:
1847
+ z, c = super().get_input(batch, k, force_c_encode=True, bs=bs)
1848
+ else:
1849
+ z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
1850
+ force_c_encode=True, return_original_cond=True, bs=bs)
1851
+ x_low = batch[self.low_scale_key][:bs]
1852
+ x_low = rearrange(x_low, 'b h w c -> b c h w')
1853
+ x_low = x_low.to(memory_format=torch.contiguous_format).float()
1854
+
1855
+ encoder_posterior = self.encode_first_stage(x_low)
1856
+ zx = self.get_first_stage_encoding(encoder_posterior).detach()
1857
+ all_conds = {"c_concat": [zx], "c_crossattn": [c]}
1858
+
1859
+ if log_mode:
1860
+ # TODO: maybe disable if too expensive
1861
+ interpretability = False
1862
+ if interpretability:
1863
+ zx = zx[:, :, ::2, ::2]
1864
+ return z, all_conds, x, xrec, xc, x_low
1865
+ return z, all_conds
1866
+
1867
+ @torch.no_grad()
1868
+ def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
1869
+ plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True,
1870
+ unconditional_guidance_scale=1., unconditional_guidance_label=None, use_ema_scope=True,
1871
+ **kwargs):
1872
+ ema_scope = self.ema_scope if use_ema_scope else nullcontext
1873
+ use_ddim = ddim_steps is not None
1874
+
1875
+ log = dict()
1876
+ z, c, x, xrec, xc, x_low = self.get_input(batch, self.first_stage_key, bs=N, log_mode=True)
1877
+ N = min(x.shape[0], N)
1878
+ n_row = min(x.shape[0], n_row)
1879
+ log["inputs"] = x
1880
+ log["reconstruction"] = xrec
1881
+ log["x_lr"] = x_low
1882
+
1883
+ if self.model.conditioning_key is not None:
1884
+ if hasattr(self.cond_stage_model, "decode"):
1885
+ xc = self.cond_stage_model.decode(c)
1886
+ log["conditioning"] = xc
1887
+ elif self.cond_stage_key in ["caption", "txt"]:
1888
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2]//25)
1889
+ log["conditioning"] = xc
1890
+ elif self.cond_stage_key == 'class_label':
1891
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2]//25)
1892
+ log['conditioning'] = xc
1893
+ elif isimage(xc):
1894
+ log["conditioning"] = xc
1895
+ if ismap(xc):
1896
+ log["original_conditioning"] = self.to_rgb(xc)
1897
+
1898
+ if sample:
1899
+ # get denoise row
1900
+ with ema_scope("Sampling"):
1901
+ samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1902
+ ddim_steps=ddim_steps, eta=ddim_eta)
1903
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
1904
+ x_samples = self.decode_first_stage(samples)
1905
+ log["samples"] = x_samples
1906
+
1907
+ if unconditional_guidance_scale > 1.0:
1908
+ uc_tmp = self.get_unconditional_conditioning(N, unconditional_guidance_label)
1909
+ uc = dict()
1910
+ for k in c:
1911
+ if k == "c_crossattn":
1912
+ assert isinstance(c[k], list) and len(c[k]) == 1
1913
+ uc[k] = [uc_tmp]
1914
+ elif isinstance(c[k], list):
1915
+ uc[k] = [c[k][i] for i in range(len(c[k]))]
1916
+ else:
1917
+ uc[k] = c[k]
1918
+
1919
+ with ema_scope("Sampling with classifier-free guidance"):
1920
+ samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1921
+ ddim_steps=ddim_steps, eta=ddim_eta,
1922
+ unconditional_guidance_scale=unconditional_guidance_scale,
1923
+ unconditional_conditioning=uc,
1924
+ )
1925
+ x_samples_cfg = self.decode_first_stage(samples_cfg)
1926
+ log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
1927
+ return log
1928
+
1929
+ class MultiCatFrameDiffusion(LatentDiffusion):
1930
+ def __init__(self, *args, low_scale_key="LR", **kwargs):
1931
+ super().__init__(*args, **kwargs)
1932
+ # assumes that neither the cond_stage nor the low_scale_model contain trainable params
1933
+ assert not self.cond_stage_trainable
1934
+ self.low_scale_key = low_scale_key
1935
+
1936
+ @torch.no_grad()
1937
+ def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False):
1938
+ n = 2
1939
+ if not log_mode:
1940
+ z, c = super().get_input(batch, k, force_c_encode=True, bs=bs)
1941
+ else:
1942
+ z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
1943
+ force_c_encode=True, return_original_cond=True, bs=bs)
1944
+ cat_conds = batch[self.low_scale_key][:bs]
1945
+ cats = []
1946
+ for i in range(n):
1947
+ x_low = cat_conds[:,:,:,3*i:3*(i+1)]
1948
+ x_low = rearrange(x_low, 'b h w c -> b c h w')
1949
+ x_low = x_low.to(memory_format=torch.contiguous_format).float()
1950
+ encoder_posterior = self.encode_first_stage(x_low)
1951
+ zx = self.get_first_stage_encoding(encoder_posterior).detach()
1952
+ cats.append(zx)
1953
+
1954
+ all_conds = {"c_concat": [torch.cat(cats, dim=1)], "c_crossattn": [c]}
1955
+
1956
+ if log_mode:
1957
+ # TODO: maybe disable if too expensive
1958
+ interpretability = False
1959
+ if interpretability:
1960
+ zx = zx[:, :, ::2, ::2]
1961
+ return z, all_conds, x, xrec, xc, x_low
1962
+ return z, all_conds
1963
+
1964
+ @torch.no_grad()
1965
+ def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
1966
+ plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True,
1967
+ unconditional_guidance_scale=1., unconditional_guidance_label=None, use_ema_scope=True,
1968
+ **kwargs):
1969
+ ema_scope = self.ema_scope if use_ema_scope else nullcontext
1970
+ use_ddim = ddim_steps is not None
1971
+
1972
+ log = dict()
1973
+ z, c, x, xrec, xc, x_low = self.get_input(batch, self.first_stage_key, bs=N, log_mode=True)
1974
+ N = min(x.shape[0], N)
1975
+ n_row = min(x.shape[0], n_row)
1976
+ log["inputs"] = x
1977
+ log["reconstruction"] = xrec
1978
+ log["x_lr"] = x_low
1979
+
1980
+ if self.model.conditioning_key is not None:
1981
+ if hasattr(self.cond_stage_model, "decode"):
1982
+ xc = self.cond_stage_model.decode(c)
1983
+ log["conditioning"] = xc
1984
+ elif self.cond_stage_key in ["caption", "txt"]:
1985
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2]//25)
1986
+ log["conditioning"] = xc
1987
+ elif self.cond_stage_key == 'class_label':
1988
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2]//25)
1989
+ log['conditioning'] = xc
1990
+ elif isimage(xc):
1991
+ log["conditioning"] = xc
1992
+ if ismap(xc):
1993
+ log["original_conditioning"] = self.to_rgb(xc)
1994
+
1995
+ if sample:
1996
+ # get denoise row
1997
+ with ema_scope("Sampling"):
1998
+ samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
1999
+ ddim_steps=ddim_steps, eta=ddim_eta)
2000
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
2001
+ x_samples = self.decode_first_stage(samples)
2002
+ log["samples"] = x_samples
2003
+
2004
+ if unconditional_guidance_scale > 1.0:
2005
+ uc_tmp = self.get_unconditional_conditioning(N, unconditional_guidance_label)
2006
+ uc = dict()
2007
+ for k in c:
2008
+ if k == "c_crossattn":
2009
+ assert isinstance(c[k], list) and len(c[k]) == 1
2010
+ uc[k] = [uc_tmp]
2011
+ elif isinstance(c[k], list):
2012
+ uc[k] = [c[k][i] for i in range(len(c[k]))]
2013
+ else:
2014
+ uc[k] = c[k]
2015
+
2016
+ with ema_scope("Sampling with classifier-free guidance"):
2017
+ samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
2018
+ ddim_steps=ddim_steps, eta=ddim_eta,
2019
+ unconditional_guidance_scale=unconditional_guidance_scale,
2020
+ unconditional_conditioning=uc,
2021
+ )
2022
+ x_samples_cfg = self.decode_first_stage(samples_cfg)
2023
+ log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
2024
+ return log
models/ldm/models/diffusion/plms.py ADDED
@@ -0,0 +1,259 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """SAMPLING ONLY."""
2
+
3
+ import torch
4
+ import numpy as np
5
+ from tqdm import tqdm
6
+ from functools import partial
7
+
8
+ from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
9
+ from ldm.models.diffusion.sampling_util import norm_thresholding
10
+
11
+
12
+ class PLMSSampler(object):
13
+ def __init__(self, model, schedule="linear", **kwargs):
14
+ super().__init__()
15
+ self.model = model
16
+ self.ddpm_num_timesteps = model.num_timesteps
17
+ self.schedule = schedule
18
+
19
+ def register_buffer(self, name, attr):
20
+ if type(attr) == torch.Tensor:
21
+ if attr.device != torch.device("cuda"):
22
+ attr = attr.to(torch.device("cuda"))
23
+ setattr(self, name, attr)
24
+
25
+ def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
26
+ if ddim_eta != 0:
27
+ raise ValueError('ddim_eta must be 0 for PLMS')
28
+ self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
29
+ num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
30
+ alphas_cumprod = self.model.alphas_cumprod
31
+ assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
32
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
33
+
34
+ self.register_buffer('betas', to_torch(self.model.betas))
35
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
36
+ self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
37
+
38
+ # calculations for diffusion q(x_t | x_{t-1}) and others
39
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
40
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
41
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
42
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
43
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
44
+
45
+ # ddim sampling parameters
46
+ ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
47
+ ddim_timesteps=self.ddim_timesteps,
48
+ eta=ddim_eta,verbose=verbose)
49
+ self.register_buffer('ddim_sigmas', ddim_sigmas)
50
+ self.register_buffer('ddim_alphas', ddim_alphas)
51
+ self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
52
+ self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
53
+ sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
54
+ (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
55
+ 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
56
+ self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
57
+
58
+ @torch.no_grad()
59
+ def sample(self,
60
+ S,
61
+ batch_size,
62
+ shape,
63
+ conditioning=None,
64
+ callback=None,
65
+ normals_sequence=None,
66
+ img_callback=None,
67
+ quantize_x0=False,
68
+ eta=0.,
69
+ mask=None,
70
+ x0=None,
71
+ temperature=1.,
72
+ noise_dropout=0.,
73
+ score_corrector=None,
74
+ corrector_kwargs=None,
75
+ verbose=True,
76
+ x_T=None,
77
+ log_every_t=100,
78
+ unconditional_guidance_scale=1.,
79
+ unconditional_conditioning=None,
80
+ # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
81
+ dynamic_threshold=None,
82
+ **kwargs
83
+ ):
84
+ if conditioning is not None:
85
+ if isinstance(conditioning, dict):
86
+ ctmp = conditioning[list(conditioning.keys())[0]]
87
+ while isinstance(ctmp, list): ctmp = ctmp[0]
88
+ cbs = ctmp.shape[0]
89
+ if cbs != batch_size:
90
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
91
+ else:
92
+ if conditioning.shape[0] != batch_size:
93
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
94
+
95
+ self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
96
+ # sampling
97
+ C, H, W = shape
98
+ size = (batch_size, C, H, W)
99
+ print(f'Data shape for PLMS sampling is {size}')
100
+
101
+ samples, intermediates = self.plms_sampling(conditioning, size,
102
+ callback=callback,
103
+ img_callback=img_callback,
104
+ quantize_denoised=quantize_x0,
105
+ mask=mask, x0=x0,
106
+ ddim_use_original_steps=False,
107
+ noise_dropout=noise_dropout,
108
+ temperature=temperature,
109
+ score_corrector=score_corrector,
110
+ corrector_kwargs=corrector_kwargs,
111
+ x_T=x_T,
112
+ log_every_t=log_every_t,
113
+ unconditional_guidance_scale=unconditional_guidance_scale,
114
+ unconditional_conditioning=unconditional_conditioning,
115
+ dynamic_threshold=dynamic_threshold,
116
+ )
117
+ return samples, intermediates
118
+
119
+ @torch.no_grad()
120
+ def plms_sampling(self, cond, shape,
121
+ x_T=None, ddim_use_original_steps=False,
122
+ callback=None, timesteps=None, quantize_denoised=False,
123
+ mask=None, x0=None, img_callback=None, log_every_t=100,
124
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
125
+ unconditional_guidance_scale=1., unconditional_conditioning=None,
126
+ dynamic_threshold=None):
127
+ device = self.model.betas.device
128
+ b = shape[0]
129
+ if x_T is None:
130
+ img = torch.randn(shape, device=device)
131
+ else:
132
+ img = x_T
133
+
134
+ if timesteps is None:
135
+ timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
136
+ elif timesteps is not None and not ddim_use_original_steps:
137
+ subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
138
+ timesteps = self.ddim_timesteps[:subset_end]
139
+
140
+ intermediates = {'x_inter': [img], 'pred_x0': [img]}
141
+ time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps)
142
+ total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
143
+ print(f"Running PLMS Sampling with {total_steps} timesteps")
144
+
145
+ iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps)
146
+ old_eps = []
147
+
148
+ for i, step in enumerate(iterator):
149
+ index = total_steps - i - 1
150
+ ts = torch.full((b,), step, device=device, dtype=torch.long)
151
+ ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
152
+
153
+ if mask is not None:
154
+ assert x0 is not None
155
+ img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
156
+ img = img_orig * mask + (1. - mask) * img
157
+
158
+ outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
159
+ quantize_denoised=quantize_denoised, temperature=temperature,
160
+ noise_dropout=noise_dropout, score_corrector=score_corrector,
161
+ corrector_kwargs=corrector_kwargs,
162
+ unconditional_guidance_scale=unconditional_guidance_scale,
163
+ unconditional_conditioning=unconditional_conditioning,
164
+ old_eps=old_eps, t_next=ts_next,
165
+ dynamic_threshold=dynamic_threshold)
166
+ img, pred_x0, e_t = outs
167
+ old_eps.append(e_t)
168
+ if len(old_eps) >= 4:
169
+ old_eps.pop(0)
170
+ if callback: callback(i)
171
+ if img_callback: img_callback(pred_x0, i)
172
+
173
+ if index % log_every_t == 0 or index == total_steps - 1:
174
+ intermediates['x_inter'].append(img)
175
+ intermediates['pred_x0'].append(pred_x0)
176
+
177
+ return img, intermediates
178
+
179
+ @torch.no_grad()
180
+ def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
181
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
182
+ unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None,
183
+ dynamic_threshold=None):
184
+ b, *_, device = *x.shape, x.device
185
+
186
+ def get_model_output(x, t):
187
+ if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
188
+ e_t = self.model.apply_model(x, t, c)
189
+ else:
190
+ x_in = torch.cat([x] * 2)
191
+ t_in = torch.cat([t] * 2)
192
+ if isinstance(c, dict):
193
+ assert isinstance(unconditional_conditioning, dict)
194
+ c_in = dict()
195
+ for k in c:
196
+ if isinstance(c[k], list):
197
+ c_in[k] = [torch.cat([
198
+ unconditional_conditioning[k][i],
199
+ c[k][i]]) for i in range(len(c[k]))]
200
+ else:
201
+ c_in[k] = torch.cat([
202
+ unconditional_conditioning[k],
203
+ c[k]])
204
+ else:
205
+ c_in = torch.cat([unconditional_conditioning, c])
206
+ e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
207
+ e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
208
+
209
+ if score_corrector is not None:
210
+ assert self.model.parameterization == "eps"
211
+ e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
212
+
213
+ return e_t
214
+
215
+ alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
216
+ alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
217
+ sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
218
+ sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
219
+
220
+ def get_x_prev_and_pred_x0(e_t, index):
221
+ # select parameters corresponding to the currently considered timestep
222
+ a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
223
+ a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
224
+ sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
225
+ sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
226
+
227
+ # current prediction for x_0
228
+ pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
229
+ if quantize_denoised:
230
+ pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
231
+ if dynamic_threshold is not None:
232
+ pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
233
+ # direction pointing to x_t
234
+ dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
235
+ noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
236
+ if noise_dropout > 0.:
237
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
238
+ x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
239
+ return x_prev, pred_x0
240
+
241
+ e_t = get_model_output(x, t)
242
+ if len(old_eps) == 0:
243
+ # Pseudo Improved Euler (2nd order)
244
+ x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
245
+ e_t_next = get_model_output(x_prev, t_next)
246
+ e_t_prime = (e_t + e_t_next) / 2
247
+ elif len(old_eps) == 1:
248
+ # 2nd order Pseudo Linear Multistep (Adams-Bashforth)
249
+ e_t_prime = (3 * e_t - old_eps[-1]) / 2
250
+ elif len(old_eps) == 2:
251
+ # 3nd order Pseudo Linear Multistep (Adams-Bashforth)
252
+ e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
253
+ elif len(old_eps) >= 3:
254
+ # 4nd order Pseudo Linear Multistep (Adams-Bashforth)
255
+ e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
256
+
257
+ x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
258
+
259
+ return x_prev, pred_x0, e_t
models/ldm/models/diffusion/sampling_util.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+
4
+
5
+ def append_dims(x, target_dims):
6
+ """Appends dimensions to the end of a tensor until it has target_dims dimensions.
7
+ From https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/utils.py"""
8
+ dims_to_append = target_dims - x.ndim
9
+ if dims_to_append < 0:
10
+ raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
11
+ return x[(...,) + (None,) * dims_to_append]
12
+
13
+
14
+ def renorm_thresholding(x0, value):
15
+ # renorm
16
+ pred_max = x0.max()
17
+ pred_min = x0.min()
18
+ pred_x0 = (x0 - pred_min) / (pred_max - pred_min) # 0 ... 1
19
+ pred_x0 = 2 * pred_x0 - 1. # -1 ... 1
20
+
21
+ s = torch.quantile(
22
+ rearrange(pred_x0, 'b ... -> b (...)').abs(),
23
+ value,
24
+ dim=-1
25
+ )
26
+ s.clamp_(min=1.0)
27
+ s = s.view(-1, *((1,) * (pred_x0.ndim - 1)))
28
+
29
+ # clip by threshold
30
+ # pred_x0 = pred_x0.clamp(-s, s) / s # needs newer pytorch # TODO bring back to pure-gpu with min/max
31
+
32
+ # temporary hack: numpy on cpu
33
+ pred_x0 = np.clip(pred_x0.cpu().numpy(), -s.cpu().numpy(), s.cpu().numpy()) / s.cpu().numpy()
34
+ pred_x0 = torch.tensor(pred_x0).to(self.model.device)
35
+
36
+ # re.renorm
37
+ pred_x0 = (pred_x0 + 1.) / 2. # 0 ... 1
38
+ pred_x0 = (pred_max - pred_min) * pred_x0 + pred_min # orig range
39
+ return pred_x0
40
+
41
+
42
+ def norm_thresholding(x0, value):
43
+ s = append_dims(x0.pow(2).flatten(1).mean(1).sqrt().clamp(min=value), x0.ndim)
44
+ return x0 * (value / s)
45
+
46
+
47
+ def spatial_norm_thresholding(x0, value):
48
+ # b c h w
49
+ s = x0.pow(2).mean(1, keepdim=True).sqrt().clamp(min=value)
50
+ return x0 * (value / s)
models/ldm/modules/attention.py ADDED
@@ -0,0 +1,278 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from inspect import isfunction
2
+ import math
3
+ import torch
4
+ import torch.nn.functional as F
5
+ from torch import nn, einsum
6
+ from einops import rearrange, repeat
7
+
8
+ from ldm.modules.diffusionmodules.util import checkpoint
9
+
10
+
11
+ def exists(val):
12
+ return val is not None
13
+
14
+
15
+ def uniq(arr):
16
+ return{el: True for el in arr}.keys()
17
+
18
+
19
+ def default(val, d):
20
+ if exists(val):
21
+ return val
22
+ return d() if isfunction(d) else d
23
+
24
+
25
+ def max_neg_value(t):
26
+ return -torch.finfo(t.dtype).max
27
+
28
+
29
+ def init_(tensor):
30
+ dim = tensor.shape[-1]
31
+ std = 1 / math.sqrt(dim)
32
+ tensor.uniform_(-std, std)
33
+ return tensor
34
+
35
+
36
+ # feedforward
37
+ class GEGLU(nn.Module):
38
+ def __init__(self, dim_in, dim_out):
39
+ super().__init__()
40
+ self.proj = nn.Linear(dim_in, dim_out * 2)
41
+
42
+ def forward(self, x):
43
+ x, gate = self.proj(x).chunk(2, dim=-1)
44
+ return x * F.gelu(gate)
45
+
46
+
47
+ class FeedForward(nn.Module):
48
+ def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
49
+ super().__init__()
50
+ inner_dim = int(dim * mult)
51
+ dim_out = default(dim_out, dim)
52
+ project_in = nn.Sequential(
53
+ nn.Linear(dim, inner_dim),
54
+ nn.GELU()
55
+ ) if not glu else GEGLU(dim, inner_dim)
56
+
57
+ self.net = nn.Sequential(
58
+ project_in,
59
+ nn.Dropout(dropout),
60
+ nn.Linear(inner_dim, dim_out)
61
+ )
62
+
63
+ def forward(self, x):
64
+ return self.net(x)
65
+
66
+
67
+ def zero_module(module):
68
+ """
69
+ Zero out the parameters of a module and return it.
70
+ """
71
+ for p in module.parameters():
72
+ p.detach().zero_()
73
+ return module
74
+
75
+
76
+ def Normalize(in_channels):
77
+ return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
78
+
79
+
80
+ class LinearAttention(nn.Module):
81
+ def __init__(self, dim, heads=4, dim_head=32):
82
+ super().__init__()
83
+ self.heads = heads
84
+ hidden_dim = dim_head * heads
85
+ self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
86
+ self.to_out = nn.Conv2d(hidden_dim, dim, 1)
87
+
88
+ def forward(self, x):
89
+ b, c, h, w = x.shape
90
+ qkv = self.to_qkv(x)
91
+ q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
92
+ k = k.softmax(dim=-1)
93
+ context = torch.einsum('bhdn,bhen->bhde', k, v)
94
+ out = torch.einsum('bhde,bhdn->bhen', context, q)
95
+ out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
96
+ return self.to_out(out)
97
+
98
+
99
+ class SpatialSelfAttention(nn.Module):
100
+ def __init__(self, in_channels):
101
+ super().__init__()
102
+ self.in_channels = in_channels
103
+
104
+ self.norm = Normalize(in_channels)
105
+ self.q = torch.nn.Conv2d(in_channels,
106
+ in_channels,
107
+ kernel_size=1,
108
+ stride=1,
109
+ padding=0)
110
+ self.k = torch.nn.Conv2d(in_channels,
111
+ in_channels,
112
+ kernel_size=1,
113
+ stride=1,
114
+ padding=0)
115
+ self.v = torch.nn.Conv2d(in_channels,
116
+ in_channels,
117
+ kernel_size=1,
118
+ stride=1,
119
+ padding=0)
120
+ self.proj_out = torch.nn.Conv2d(in_channels,
121
+ in_channels,
122
+ kernel_size=1,
123
+ stride=1,
124
+ padding=0)
125
+
126
+ def forward(self, x):
127
+ h_ = x
128
+ h_ = self.norm(h_)
129
+ q = self.q(h_)
130
+ k = self.k(h_)
131
+ v = self.v(h_)
132
+
133
+ # compute attention
134
+ b,c,h,w = q.shape
135
+ q = rearrange(q, 'b c h w -> b (h w) c')
136
+ k = rearrange(k, 'b c h w -> b c (h w)')
137
+ w_ = torch.einsum('bij,bjk->bik', q, k)
138
+
139
+ w_ = w_ * (int(c)**(-0.5))
140
+ w_ = torch.nn.functional.softmax(w_, dim=2)
141
+
142
+ # attend to values
143
+ v = rearrange(v, 'b c h w -> b c (h w)')
144
+ w_ = rearrange(w_, 'b i j -> b j i')
145
+ h_ = torch.einsum('bij,bjk->bik', v, w_)
146
+ h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
147
+ h_ = self.proj_out(h_)
148
+
149
+ return x+h_
150
+
151
+
152
+ class CrossAttention(nn.Module):
153
+ def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
154
+ super().__init__()
155
+ inner_dim = dim_head * heads
156
+ context_dim = default(context_dim, query_dim)
157
+
158
+ self.scale = dim_head ** -0.5
159
+ self.heads = heads
160
+
161
+ self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
162
+ self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
163
+ self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
164
+
165
+ self.to_out = nn.Sequential(
166
+ nn.Linear(inner_dim, query_dim),
167
+ nn.Dropout(dropout)
168
+ )
169
+
170
+ def forward(self, x, context=None, mask=None):
171
+ h = self.heads
172
+
173
+ q = self.to_q(x)
174
+ context = default(context, x)
175
+ k = self.to_k(context)
176
+ v = self.to_v(context)
177
+ q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
178
+
179
+ sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
180
+
181
+ if exists(mask):
182
+ mask = rearrange(mask, 'b ... -> b (...)')
183
+ max_neg_value = -torch.finfo(sim.dtype).max
184
+ mask = repeat(mask, 'b j -> (b h) () j', h=h)
185
+ sim.masked_fill_(~mask, max_neg_value)
186
+
187
+ # attention, what we cannot get enough of
188
+ attn = sim.softmax(dim=-1)
189
+
190
+ out = einsum('b i j, b j d -> b i d', attn, v)
191
+ out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
192
+ return self.to_out(out)
193
+
194
+
195
+ class BasicTransformerBlock(nn.Module):
196
+ def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
197
+ disable_self_attn=False, cross_domain_cfg=None):
198
+ super().__init__()
199
+ self.disable_self_attn = disable_self_attn
200
+ self.cross_domain_cfg = cross_domain_cfg
201
+ self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
202
+ context_dim=context_dim if self.disable_self_attn else None) # is a self-attention if not self.disable_self_attn
203
+ self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
204
+ self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
205
+ heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
206
+ self.norm1 = nn.LayerNorm(dim)
207
+ self.norm2 = nn.LayerNorm(dim)
208
+ self.norm3 = nn.LayerNorm(dim)
209
+ self.checkpoint = checkpoint
210
+
211
+ def _parse_domain(self, k, v):
212
+
213
+ assert self.domain_attention_num_tasks == 2 # only support two tasks now
214
+
215
+ key_0, key_1 = torch.chunk(k, dim=0, chunks=self.domain_attention_num_tasks) # keys shape (b t) d c
216
+ value_0, value_1 = torch.chunk(v, dim=0, chunks=self.domain_attention_num_tasks)
217
+ key = torch.cat([key_0, key_1], dim=1) # (b t) 2d c
218
+ value = torch.cat([value_0, value_1], dim=1) # (b t) 2d c
219
+ key = torch.cat([key]*self.domain_attention_num_tasks, dim=0) # ( 2 b t) 2d c
220
+ value = torch.cat([value]*self.domain_attention_num_tasks, dim=0) # (2 b t) 2d c
221
+ return key, value
222
+
223
+ def forward(self, x, context=None):
224
+ return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
225
+
226
+ def _forward(self, x, context=None):
227
+ x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x
228
+ x = self.attn2(self.norm2(x), context=context) + x
229
+ x = self.ff(self.norm3(x)) + x
230
+ return x
231
+
232
+
233
+ class SpatialTransformer(nn.Module):
234
+ """
235
+ Transformer block for image-like data.
236
+ First, project the input (aka embedding)
237
+ and reshape to b, t, d.
238
+ Then apply standard transformer action.
239
+ Finally, reshape to image
240
+ """
241
+ def __init__(self, in_channels, n_heads, d_head,
242
+ depth=1, dropout=0., context_dim=None,
243
+ disable_self_attn=False, cross_domain_cfg=None):
244
+ super().__init__()
245
+ self.in_channels = in_channels
246
+ inner_dim = n_heads * d_head
247
+ self.norm = Normalize(in_channels)
248
+
249
+ self.proj_in = nn.Conv2d(in_channels,
250
+ inner_dim,
251
+ kernel_size=1,
252
+ stride=1,
253
+ padding=0)
254
+
255
+ self.transformer_blocks = nn.ModuleList(
256
+ [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim,
257
+ disable_self_attn=disable_self_attn, cross_domain_cfg=cross_domain_cfg,)
258
+ for d in range(depth)]
259
+ )
260
+
261
+ self.proj_out = zero_module(nn.Conv2d(inner_dim,
262
+ in_channels,
263
+ kernel_size=1,
264
+ stride=1,
265
+ padding=0))
266
+
267
+ def forward(self, x, context=None):
268
+ # note: if no context is given, cross-attention defaults to self-attention
269
+ b, c, h, w = x.shape
270
+ x_in = x
271
+ x = self.norm(x)
272
+ x = self.proj_in(x)
273
+ x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
274
+ for block in self.transformer_blocks:
275
+ x = block(x, context=context)
276
+ x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
277
+ x = self.proj_out(x)
278
+ return x + x_in
models/ldm/modules/diffusionmodules/__init__.py ADDED
File without changes
models/ldm/modules/diffusionmodules/model.py ADDED
@@ -0,0 +1,835 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # pytorch_diffusion + derived encoder decoder
2
+ import math
3
+ import torch
4
+ import torch.nn as nn
5
+ import numpy as np
6
+ from einops import rearrange
7
+
8
+ from ldm.util import instantiate_from_config
9
+ from ldm.modules.attention import LinearAttention
10
+
11
+
12
+ def get_timestep_embedding(timesteps, embedding_dim):
13
+ """
14
+ This matches the implementation in Denoising Diffusion Probabilistic Models:
15
+ From Fairseq.
16
+ Build sinusoidal embeddings.
17
+ This matches the implementation in tensor2tensor, but differs slightly
18
+ from the description in Section 3.5 of "Attention Is All You Need".
19
+ """
20
+ assert len(timesteps.shape) == 1
21
+
22
+ half_dim = embedding_dim // 2
23
+ emb = math.log(10000) / (half_dim - 1)
24
+ emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
25
+ emb = emb.to(device=timesteps.device)
26
+ emb = timesteps.float()[:, None] * emb[None, :]
27
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
28
+ if embedding_dim % 2 == 1: # zero pad
29
+ emb = torch.nn.functional.pad(emb, (0,1,0,0))
30
+ return emb
31
+
32
+
33
+ def nonlinearity(x):
34
+ # swish
35
+ return x*torch.sigmoid(x)
36
+
37
+
38
+ def Normalize(in_channels, num_groups=32):
39
+ return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
40
+
41
+
42
+ class Upsample(nn.Module):
43
+ def __init__(self, in_channels, with_conv):
44
+ super().__init__()
45
+ self.with_conv = with_conv
46
+ if self.with_conv:
47
+ self.conv = torch.nn.Conv2d(in_channels,
48
+ in_channels,
49
+ kernel_size=3,
50
+ stride=1,
51
+ padding=1)
52
+
53
+ def forward(self, x):
54
+ x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
55
+ if self.with_conv:
56
+ x = self.conv(x)
57
+ return x
58
+
59
+
60
+ class Downsample(nn.Module):
61
+ def __init__(self, in_channels, with_conv):
62
+ super().__init__()
63
+ self.with_conv = with_conv
64
+ if self.with_conv:
65
+ # no asymmetric padding in torch conv, must do it ourselves
66
+ self.conv = torch.nn.Conv2d(in_channels,
67
+ in_channels,
68
+ kernel_size=3,
69
+ stride=2,
70
+ padding=0)
71
+
72
+ def forward(self, x):
73
+ if self.with_conv:
74
+ pad = (0,1,0,1)
75
+ x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
76
+ x = self.conv(x)
77
+ else:
78
+ x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
79
+ return x
80
+
81
+
82
+ class ResnetBlock(nn.Module):
83
+ def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
84
+ dropout, temb_channels=512):
85
+ super().__init__()
86
+ self.in_channels = in_channels
87
+ out_channels = in_channels if out_channels is None else out_channels
88
+ self.out_channels = out_channels
89
+ self.use_conv_shortcut = conv_shortcut
90
+
91
+ self.norm1 = Normalize(in_channels)
92
+ self.conv1 = torch.nn.Conv2d(in_channels,
93
+ out_channels,
94
+ kernel_size=3,
95
+ stride=1,
96
+ padding=1)
97
+ if temb_channels > 0:
98
+ self.temb_proj = torch.nn.Linear(temb_channels,
99
+ out_channels)
100
+ self.norm2 = Normalize(out_channels)
101
+ self.dropout = torch.nn.Dropout(dropout)
102
+ self.conv2 = torch.nn.Conv2d(out_channels,
103
+ out_channels,
104
+ kernel_size=3,
105
+ stride=1,
106
+ padding=1)
107
+ if self.in_channels != self.out_channels:
108
+ if self.use_conv_shortcut:
109
+ self.conv_shortcut = torch.nn.Conv2d(in_channels,
110
+ out_channels,
111
+ kernel_size=3,
112
+ stride=1,
113
+ padding=1)
114
+ else:
115
+ self.nin_shortcut = torch.nn.Conv2d(in_channels,
116
+ out_channels,
117
+ kernel_size=1,
118
+ stride=1,
119
+ padding=0)
120
+
121
+ def forward(self, x, temb):
122
+ h = x
123
+ h = self.norm1(h)
124
+ h = nonlinearity(h)
125
+ h = self.conv1(h)
126
+
127
+ if temb is not None:
128
+ h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
129
+
130
+ h = self.norm2(h)
131
+ h = nonlinearity(h)
132
+ h = self.dropout(h)
133
+ h = self.conv2(h)
134
+
135
+ if self.in_channels != self.out_channels:
136
+ if self.use_conv_shortcut:
137
+ x = self.conv_shortcut(x)
138
+ else:
139
+ x = self.nin_shortcut(x)
140
+
141
+ return x+h
142
+
143
+
144
+ class LinAttnBlock(LinearAttention):
145
+ """to match AttnBlock usage"""
146
+ def __init__(self, in_channels):
147
+ super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
148
+
149
+
150
+ class AttnBlock(nn.Module):
151
+ def __init__(self, in_channels):
152
+ super().__init__()
153
+ self.in_channels = in_channels
154
+
155
+ self.norm = Normalize(in_channels)
156
+ self.q = torch.nn.Conv2d(in_channels,
157
+ in_channels,
158
+ kernel_size=1,
159
+ stride=1,
160
+ padding=0)
161
+ self.k = torch.nn.Conv2d(in_channels,
162
+ in_channels,
163
+ kernel_size=1,
164
+ stride=1,
165
+ padding=0)
166
+ self.v = torch.nn.Conv2d(in_channels,
167
+ in_channels,
168
+ kernel_size=1,
169
+ stride=1,
170
+ padding=0)
171
+ self.proj_out = torch.nn.Conv2d(in_channels,
172
+ in_channels,
173
+ kernel_size=1,
174
+ stride=1,
175
+ padding=0)
176
+
177
+
178
+ def forward(self, x):
179
+ h_ = x
180
+ h_ = self.norm(h_)
181
+ q = self.q(h_)
182
+ k = self.k(h_)
183
+ v = self.v(h_)
184
+
185
+ # compute attention
186
+ b,c,h,w = q.shape
187
+ q = q.reshape(b,c,h*w)
188
+ q = q.permute(0,2,1) # b,hw,c
189
+ k = k.reshape(b,c,h*w) # b,c,hw
190
+ w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
191
+ w_ = w_ * (int(c)**(-0.5))
192
+ w_ = torch.nn.functional.softmax(w_, dim=2)
193
+
194
+ # attend to values
195
+ v = v.reshape(b,c,h*w)
196
+ w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
197
+ h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
198
+ h_ = h_.reshape(b,c,h,w)
199
+
200
+ h_ = self.proj_out(h_)
201
+
202
+ return x+h_
203
+
204
+
205
+ def make_attn(in_channels, attn_type="vanilla"):
206
+ assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown'
207
+ print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
208
+ if attn_type == "vanilla":
209
+ return AttnBlock(in_channels)
210
+ elif attn_type == "none":
211
+ return nn.Identity(in_channels)
212
+ else:
213
+ return LinAttnBlock(in_channels)
214
+
215
+
216
+ class Model(nn.Module):
217
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
218
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
219
+ resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
220
+ super().__init__()
221
+ if use_linear_attn: attn_type = "linear"
222
+ self.ch = ch
223
+ self.temb_ch = self.ch*4
224
+ self.num_resolutions = len(ch_mult)
225
+ self.num_res_blocks = num_res_blocks
226
+ self.resolution = resolution
227
+ self.in_channels = in_channels
228
+
229
+ self.use_timestep = use_timestep
230
+ if self.use_timestep:
231
+ # timestep embedding
232
+ self.temb = nn.Module()
233
+ self.temb.dense = nn.ModuleList([
234
+ torch.nn.Linear(self.ch,
235
+ self.temb_ch),
236
+ torch.nn.Linear(self.temb_ch,
237
+ self.temb_ch),
238
+ ])
239
+
240
+ # downsampling
241
+ self.conv_in = torch.nn.Conv2d(in_channels,
242
+ self.ch,
243
+ kernel_size=3,
244
+ stride=1,
245
+ padding=1)
246
+
247
+ curr_res = resolution
248
+ in_ch_mult = (1,)+tuple(ch_mult)
249
+ self.down = nn.ModuleList()
250
+ for i_level in range(self.num_resolutions):
251
+ block = nn.ModuleList()
252
+ attn = nn.ModuleList()
253
+ block_in = ch*in_ch_mult[i_level]
254
+ block_out = ch*ch_mult[i_level]
255
+ for i_block in range(self.num_res_blocks):
256
+ block.append(ResnetBlock(in_channels=block_in,
257
+ out_channels=block_out,
258
+ temb_channels=self.temb_ch,
259
+ dropout=dropout))
260
+ block_in = block_out
261
+ if curr_res in attn_resolutions:
262
+ attn.append(make_attn(block_in, attn_type=attn_type))
263
+ down = nn.Module()
264
+ down.block = block
265
+ down.attn = attn
266
+ if i_level != self.num_resolutions-1:
267
+ down.downsample = Downsample(block_in, resamp_with_conv)
268
+ curr_res = curr_res // 2
269
+ self.down.append(down)
270
+
271
+ # middle
272
+ self.mid = nn.Module()
273
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
274
+ out_channels=block_in,
275
+ temb_channels=self.temb_ch,
276
+ dropout=dropout)
277
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
278
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
279
+ out_channels=block_in,
280
+ temb_channels=self.temb_ch,
281
+ dropout=dropout)
282
+
283
+ # upsampling
284
+ self.up = nn.ModuleList()
285
+ for i_level in reversed(range(self.num_resolutions)):
286
+ block = nn.ModuleList()
287
+ attn = nn.ModuleList()
288
+ block_out = ch*ch_mult[i_level]
289
+ skip_in = ch*ch_mult[i_level]
290
+ for i_block in range(self.num_res_blocks+1):
291
+ if i_block == self.num_res_blocks:
292
+ skip_in = ch*in_ch_mult[i_level]
293
+ block.append(ResnetBlock(in_channels=block_in+skip_in,
294
+ out_channels=block_out,
295
+ temb_channels=self.temb_ch,
296
+ dropout=dropout))
297
+ block_in = block_out
298
+ if curr_res in attn_resolutions:
299
+ attn.append(make_attn(block_in, attn_type=attn_type))
300
+ up = nn.Module()
301
+ up.block = block
302
+ up.attn = attn
303
+ if i_level != 0:
304
+ up.upsample = Upsample(block_in, resamp_with_conv)
305
+ curr_res = curr_res * 2
306
+ self.up.insert(0, up) # prepend to get consistent order
307
+
308
+ # end
309
+ self.norm_out = Normalize(block_in)
310
+ self.conv_out = torch.nn.Conv2d(block_in,
311
+ out_ch,
312
+ kernel_size=3,
313
+ stride=1,
314
+ padding=1)
315
+
316
+ def forward(self, x, t=None, context=None):
317
+ #assert x.shape[2] == x.shape[3] == self.resolution
318
+ if context is not None:
319
+ # assume aligned context, cat along channel axis
320
+ x = torch.cat((x, context), dim=1)
321
+ if self.use_timestep:
322
+ # timestep embedding
323
+ assert t is not None
324
+ temb = get_timestep_embedding(t, self.ch)
325
+ temb = self.temb.dense[0](temb)
326
+ temb = nonlinearity(temb)
327
+ temb = self.temb.dense[1](temb)
328
+ else:
329
+ temb = None
330
+
331
+ # downsampling
332
+ hs = [self.conv_in(x)]
333
+ for i_level in range(self.num_resolutions):
334
+ for i_block in range(self.num_res_blocks):
335
+ h = self.down[i_level].block[i_block](hs[-1], temb)
336
+ if len(self.down[i_level].attn) > 0:
337
+ h = self.down[i_level].attn[i_block](h)
338
+ hs.append(h)
339
+ if i_level != self.num_resolutions-1:
340
+ hs.append(self.down[i_level].downsample(hs[-1]))
341
+
342
+ # middle
343
+ h = hs[-1]
344
+ h = self.mid.block_1(h, temb)
345
+ h = self.mid.attn_1(h)
346
+ h = self.mid.block_2(h, temb)
347
+
348
+ # upsampling
349
+ for i_level in reversed(range(self.num_resolutions)):
350
+ for i_block in range(self.num_res_blocks+1):
351
+ h = self.up[i_level].block[i_block](
352
+ torch.cat([h, hs.pop()], dim=1), temb)
353
+ if len(self.up[i_level].attn) > 0:
354
+ h = self.up[i_level].attn[i_block](h)
355
+ if i_level != 0:
356
+ h = self.up[i_level].upsample(h)
357
+
358
+ # end
359
+ h = self.norm_out(h)
360
+ h = nonlinearity(h)
361
+ h = self.conv_out(h)
362
+ return h
363
+
364
+ def get_last_layer(self):
365
+ return self.conv_out.weight
366
+
367
+
368
+ class Encoder(nn.Module):
369
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
370
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
371
+ resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
372
+ **ignore_kwargs):
373
+ super().__init__()
374
+ if use_linear_attn: attn_type = "linear"
375
+ self.ch = ch
376
+ self.temb_ch = 0
377
+ self.num_resolutions = len(ch_mult)
378
+ self.num_res_blocks = num_res_blocks
379
+ self.resolution = resolution
380
+ self.in_channels = in_channels
381
+
382
+ # downsampling
383
+ self.conv_in = torch.nn.Conv2d(in_channels,
384
+ self.ch,
385
+ kernel_size=3,
386
+ stride=1,
387
+ padding=1)
388
+
389
+ curr_res = resolution
390
+ in_ch_mult = (1,)+tuple(ch_mult)
391
+ self.in_ch_mult = in_ch_mult
392
+ self.down = nn.ModuleList()
393
+ for i_level in range(self.num_resolutions):
394
+ block = nn.ModuleList()
395
+ attn = nn.ModuleList()
396
+ block_in = ch*in_ch_mult[i_level]
397
+ block_out = ch*ch_mult[i_level]
398
+ for i_block in range(self.num_res_blocks):
399
+ block.append(ResnetBlock(in_channels=block_in,
400
+ out_channels=block_out,
401
+ temb_channels=self.temb_ch,
402
+ dropout=dropout))
403
+ block_in = block_out
404
+ if curr_res in attn_resolutions:
405
+ attn.append(make_attn(block_in, attn_type=attn_type))
406
+ down = nn.Module()
407
+ down.block = block
408
+ down.attn = attn
409
+ if i_level != self.num_resolutions-1:
410
+ down.downsample = Downsample(block_in, resamp_with_conv)
411
+ curr_res = curr_res // 2
412
+ self.down.append(down)
413
+
414
+ # middle
415
+ self.mid = nn.Module()
416
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
417
+ out_channels=block_in,
418
+ temb_channels=self.temb_ch,
419
+ dropout=dropout)
420
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
421
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
422
+ out_channels=block_in,
423
+ temb_channels=self.temb_ch,
424
+ dropout=dropout)
425
+
426
+ # end
427
+ self.norm_out = Normalize(block_in)
428
+ self.conv_out = torch.nn.Conv2d(block_in,
429
+ 2*z_channels if double_z else z_channels,
430
+ kernel_size=3,
431
+ stride=1,
432
+ padding=1)
433
+
434
+ def forward(self, x):
435
+ # timestep embedding
436
+ temb = None
437
+
438
+ # downsampling
439
+ hs = [self.conv_in(x)]
440
+ for i_level in range(self.num_resolutions):
441
+ for i_block in range(self.num_res_blocks):
442
+ h = self.down[i_level].block[i_block](hs[-1], temb)
443
+ if len(self.down[i_level].attn) > 0:
444
+ h = self.down[i_level].attn[i_block](h)
445
+ hs.append(h)
446
+ if i_level != self.num_resolutions-1:
447
+ hs.append(self.down[i_level].downsample(hs[-1]))
448
+
449
+ # middle
450
+ h = hs[-1]
451
+ h = self.mid.block_1(h, temb)
452
+ h = self.mid.attn_1(h)
453
+ h = self.mid.block_2(h, temb)
454
+
455
+ # end
456
+ h = self.norm_out(h)
457
+ h = nonlinearity(h)
458
+ h = self.conv_out(h)
459
+ return h
460
+
461
+
462
+ class Decoder(nn.Module):
463
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
464
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
465
+ resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
466
+ attn_type="vanilla", **ignorekwargs):
467
+ super().__init__()
468
+ if use_linear_attn: attn_type = "linear"
469
+ self.ch = ch
470
+ self.temb_ch = 0
471
+ self.num_resolutions = len(ch_mult)
472
+ self.num_res_blocks = num_res_blocks
473
+ self.resolution = resolution
474
+ self.in_channels = in_channels
475
+ self.give_pre_end = give_pre_end
476
+ self.tanh_out = tanh_out
477
+
478
+ # compute in_ch_mult, block_in and curr_res at lowest res
479
+ in_ch_mult = (1,)+tuple(ch_mult)
480
+ block_in = ch*ch_mult[self.num_resolutions-1]
481
+ curr_res = resolution // 2**(self.num_resolutions-1)
482
+ self.z_shape = (1,z_channels,curr_res,curr_res)
483
+ print("Working with z of shape {} = {} dimensions.".format(
484
+ self.z_shape, np.prod(self.z_shape)))
485
+
486
+ # z to block_in
487
+ self.conv_in = torch.nn.Conv2d(z_channels,
488
+ block_in,
489
+ kernel_size=3,
490
+ stride=1,
491
+ padding=1)
492
+
493
+ # middle
494
+ self.mid = nn.Module()
495
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
496
+ out_channels=block_in,
497
+ temb_channels=self.temb_ch,
498
+ dropout=dropout)
499
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
500
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
501
+ out_channels=block_in,
502
+ temb_channels=self.temb_ch,
503
+ dropout=dropout)
504
+
505
+ # upsampling
506
+ self.up = nn.ModuleList()
507
+ for i_level in reversed(range(self.num_resolutions)):
508
+ block = nn.ModuleList()
509
+ attn = nn.ModuleList()
510
+ block_out = ch*ch_mult[i_level]
511
+ for i_block in range(self.num_res_blocks+1):
512
+ block.append(ResnetBlock(in_channels=block_in,
513
+ out_channels=block_out,
514
+ temb_channels=self.temb_ch,
515
+ dropout=dropout))
516
+ block_in = block_out
517
+ if curr_res in attn_resolutions:
518
+ attn.append(make_attn(block_in, attn_type=attn_type))
519
+ up = nn.Module()
520
+ up.block = block
521
+ up.attn = attn
522
+ if i_level != 0:
523
+ up.upsample = Upsample(block_in, resamp_with_conv)
524
+ curr_res = curr_res * 2
525
+ self.up.insert(0, up) # prepend to get consistent order
526
+
527
+ # end
528
+ self.norm_out = Normalize(block_in)
529
+ self.conv_out = torch.nn.Conv2d(block_in,
530
+ out_ch,
531
+ kernel_size=3,
532
+ stride=1,
533
+ padding=1)
534
+
535
+ def forward(self, z):
536
+ #assert z.shape[1:] == self.z_shape[1:]
537
+ self.last_z_shape = z.shape
538
+
539
+ # timestep embedding
540
+ temb = None
541
+
542
+ # z to block_in
543
+ h = self.conv_in(z)
544
+
545
+ # middle
546
+ h = self.mid.block_1(h, temb)
547
+ h = self.mid.attn_1(h)
548
+ h = self.mid.block_2(h, temb)
549
+
550
+ # upsampling
551
+ for i_level in reversed(range(self.num_resolutions)):
552
+ for i_block in range(self.num_res_blocks+1):
553
+ h = self.up[i_level].block[i_block](h, temb)
554
+ if len(self.up[i_level].attn) > 0:
555
+ h = self.up[i_level].attn[i_block](h)
556
+ if i_level != 0:
557
+ h = self.up[i_level].upsample(h)
558
+
559
+ # end
560
+ if self.give_pre_end:
561
+ return h
562
+
563
+ h = self.norm_out(h)
564
+ h = nonlinearity(h)
565
+ h = self.conv_out(h)
566
+ if self.tanh_out:
567
+ h = torch.tanh(h)
568
+ return h
569
+
570
+
571
+ class SimpleDecoder(nn.Module):
572
+ def __init__(self, in_channels, out_channels, *args, **kwargs):
573
+ super().__init__()
574
+ self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
575
+ ResnetBlock(in_channels=in_channels,
576
+ out_channels=2 * in_channels,
577
+ temb_channels=0, dropout=0.0),
578
+ ResnetBlock(in_channels=2 * in_channels,
579
+ out_channels=4 * in_channels,
580
+ temb_channels=0, dropout=0.0),
581
+ ResnetBlock(in_channels=4 * in_channels,
582
+ out_channels=2 * in_channels,
583
+ temb_channels=0, dropout=0.0),
584
+ nn.Conv2d(2*in_channels, in_channels, 1),
585
+ Upsample(in_channels, with_conv=True)])
586
+ # end
587
+ self.norm_out = Normalize(in_channels)
588
+ self.conv_out = torch.nn.Conv2d(in_channels,
589
+ out_channels,
590
+ kernel_size=3,
591
+ stride=1,
592
+ padding=1)
593
+
594
+ def forward(self, x):
595
+ for i, layer in enumerate(self.model):
596
+ if i in [1,2,3]:
597
+ x = layer(x, None)
598
+ else:
599
+ x = layer(x)
600
+
601
+ h = self.norm_out(x)
602
+ h = nonlinearity(h)
603
+ x = self.conv_out(h)
604
+ return x
605
+
606
+
607
+ class UpsampleDecoder(nn.Module):
608
+ def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
609
+ ch_mult=(2,2), dropout=0.0):
610
+ super().__init__()
611
+ # upsampling
612
+ self.temb_ch = 0
613
+ self.num_resolutions = len(ch_mult)
614
+ self.num_res_blocks = num_res_blocks
615
+ block_in = in_channels
616
+ curr_res = resolution // 2 ** (self.num_resolutions - 1)
617
+ self.res_blocks = nn.ModuleList()
618
+ self.upsample_blocks = nn.ModuleList()
619
+ for i_level in range(self.num_resolutions):
620
+ res_block = []
621
+ block_out = ch * ch_mult[i_level]
622
+ for i_block in range(self.num_res_blocks + 1):
623
+ res_block.append(ResnetBlock(in_channels=block_in,
624
+ out_channels=block_out,
625
+ temb_channels=self.temb_ch,
626
+ dropout=dropout))
627
+ block_in = block_out
628
+ self.res_blocks.append(nn.ModuleList(res_block))
629
+ if i_level != self.num_resolutions - 1:
630
+ self.upsample_blocks.append(Upsample(block_in, True))
631
+ curr_res = curr_res * 2
632
+
633
+ # end
634
+ self.norm_out = Normalize(block_in)
635
+ self.conv_out = torch.nn.Conv2d(block_in,
636
+ out_channels,
637
+ kernel_size=3,
638
+ stride=1,
639
+ padding=1)
640
+
641
+ def forward(self, x):
642
+ # upsampling
643
+ h = x
644
+ for k, i_level in enumerate(range(self.num_resolutions)):
645
+ for i_block in range(self.num_res_blocks + 1):
646
+ h = self.res_blocks[i_level][i_block](h, None)
647
+ if i_level != self.num_resolutions - 1:
648
+ h = self.upsample_blocks[k](h)
649
+ h = self.norm_out(h)
650
+ h = nonlinearity(h)
651
+ h = self.conv_out(h)
652
+ return h
653
+
654
+
655
+ class LatentRescaler(nn.Module):
656
+ def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
657
+ super().__init__()
658
+ # residual block, interpolate, residual block
659
+ self.factor = factor
660
+ self.conv_in = nn.Conv2d(in_channels,
661
+ mid_channels,
662
+ kernel_size=3,
663
+ stride=1,
664
+ padding=1)
665
+ self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
666
+ out_channels=mid_channels,
667
+ temb_channels=0,
668
+ dropout=0.0) for _ in range(depth)])
669
+ self.attn = AttnBlock(mid_channels)
670
+ self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
671
+ out_channels=mid_channels,
672
+ temb_channels=0,
673
+ dropout=0.0) for _ in range(depth)])
674
+
675
+ self.conv_out = nn.Conv2d(mid_channels,
676
+ out_channels,
677
+ kernel_size=1,
678
+ )
679
+
680
+ def forward(self, x):
681
+ x = self.conv_in(x)
682
+ for block in self.res_block1:
683
+ x = block(x, None)
684
+ x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
685
+ x = self.attn(x)
686
+ for block in self.res_block2:
687
+ x = block(x, None)
688
+ x = self.conv_out(x)
689
+ return x
690
+
691
+
692
+ class MergedRescaleEncoder(nn.Module):
693
+ def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
694
+ attn_resolutions, dropout=0.0, resamp_with_conv=True,
695
+ ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
696
+ super().__init__()
697
+ intermediate_chn = ch * ch_mult[-1]
698
+ self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
699
+ z_channels=intermediate_chn, double_z=False, resolution=resolution,
700
+ attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
701
+ out_ch=None)
702
+ self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
703
+ mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
704
+
705
+ def forward(self, x):
706
+ x = self.encoder(x)
707
+ x = self.rescaler(x)
708
+ return x
709
+
710
+
711
+ class MergedRescaleDecoder(nn.Module):
712
+ def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
713
+ dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
714
+ super().__init__()
715
+ tmp_chn = z_channels*ch_mult[-1]
716
+ self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
717
+ resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
718
+ ch_mult=ch_mult, resolution=resolution, ch=ch)
719
+ self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
720
+ out_channels=tmp_chn, depth=rescale_module_depth)
721
+
722
+ def forward(self, x):
723
+ x = self.rescaler(x)
724
+ x = self.decoder(x)
725
+ return x
726
+
727
+
728
+ class Upsampler(nn.Module):
729
+ def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
730
+ super().__init__()
731
+ assert out_size >= in_size
732
+ num_blocks = int(np.log2(out_size//in_size))+1
733
+ factor_up = 1.+ (out_size % in_size)
734
+ print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
735
+ self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
736
+ out_channels=in_channels)
737
+ self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
738
+ attn_resolutions=[], in_channels=None, ch=in_channels,
739
+ ch_mult=[ch_mult for _ in range(num_blocks)])
740
+
741
+ def forward(self, x):
742
+ x = self.rescaler(x)
743
+ x = self.decoder(x)
744
+ return x
745
+
746
+
747
+ class Resize(nn.Module):
748
+ def __init__(self, in_channels=None, learned=False, mode="bilinear"):
749
+ super().__init__()
750
+ self.with_conv = learned
751
+ self.mode = mode
752
+ if self.with_conv:
753
+ print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
754
+ raise NotImplementedError()
755
+ assert in_channels is not None
756
+ # no asymmetric padding in torch conv, must do it ourselves
757
+ self.conv = torch.nn.Conv2d(in_channels,
758
+ in_channels,
759
+ kernel_size=4,
760
+ stride=2,
761
+ padding=1)
762
+
763
+ def forward(self, x, scale_factor=1.0):
764
+ if scale_factor==1.0:
765
+ return x
766
+ else:
767
+ x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
768
+ return x
769
+
770
+ class FirstStagePostProcessor(nn.Module):
771
+
772
+ def __init__(self, ch_mult:list, in_channels,
773
+ pretrained_model:nn.Module=None,
774
+ reshape=False,
775
+ n_channels=None,
776
+ dropout=0.,
777
+ pretrained_config=None):
778
+ super().__init__()
779
+ if pretrained_config is None:
780
+ assert pretrained_model is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
781
+ self.pretrained_model = pretrained_model
782
+ else:
783
+ assert pretrained_config is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
784
+ self.instantiate_pretrained(pretrained_config)
785
+
786
+ self.do_reshape = reshape
787
+
788
+ if n_channels is None:
789
+ n_channels = self.pretrained_model.encoder.ch
790
+
791
+ self.proj_norm = Normalize(in_channels,num_groups=in_channels//2)
792
+ self.proj = nn.Conv2d(in_channels,n_channels,kernel_size=3,
793
+ stride=1,padding=1)
794
+
795
+ blocks = []
796
+ downs = []
797
+ ch_in = n_channels
798
+ for m in ch_mult:
799
+ blocks.append(ResnetBlock(in_channels=ch_in,out_channels=m*n_channels,dropout=dropout))
800
+ ch_in = m * n_channels
801
+ downs.append(Downsample(ch_in, with_conv=False))
802
+
803
+ self.model = nn.ModuleList(blocks)
804
+ self.downsampler = nn.ModuleList(downs)
805
+
806
+
807
+ def instantiate_pretrained(self, config):
808
+ model = instantiate_from_config(config)
809
+ self.pretrained_model = model.eval()
810
+ # self.pretrained_model.train = False
811
+ for param in self.pretrained_model.parameters():
812
+ param.requires_grad = False
813
+
814
+
815
+ @torch.no_grad()
816
+ def encode_with_pretrained(self,x):
817
+ c = self.pretrained_model.encode(x)
818
+ if isinstance(c, DiagonalGaussianDistribution):
819
+ c = c.mode()
820
+ return c
821
+
822
+ def forward(self,x):
823
+ z_fs = self.encode_with_pretrained(x)
824
+ z = self.proj_norm(z_fs)
825
+ z = self.proj(z)
826
+ z = nonlinearity(z)
827
+
828
+ for submodel, downmodel in zip(self.model,self.downsampler):
829
+ z = submodel(z,temb=None)
830
+ z = downmodel(z)
831
+
832
+ if self.do_reshape:
833
+ z = rearrange(z,'b c h w -> b (h w) c')
834
+ return z
835
+
models/ldm/modules/diffusionmodules/openaimodel.py ADDED
@@ -0,0 +1,998 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from abc import abstractmethod
2
+ from functools import partial
3
+ import math
4
+ from typing import Iterable
5
+
6
+ import numpy as np
7
+ import torch as th
8
+ import torch.nn as nn
9
+ import torch.nn.functional as F
10
+
11
+ from ldm.modules.diffusionmodules.util import (
12
+ checkpoint,
13
+ conv_nd,
14
+ linear,
15
+ avg_pool_nd,
16
+ zero_module,
17
+ normalization,
18
+ timestep_embedding,
19
+ )
20
+ from ldm.modules.attention import SpatialTransformer
21
+ from ldm.util import exists
22
+
23
+
24
+ # dummy replace
25
+ def convert_module_to_f16(x):
26
+ pass
27
+
28
+ def convert_module_to_f32(x):
29
+ pass
30
+
31
+
32
+ ## go
33
+ class AttentionPool2d(nn.Module):
34
+ """
35
+ Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
36
+ """
37
+
38
+ def __init__(
39
+ self,
40
+ spacial_dim: int,
41
+ embed_dim: int,
42
+ num_heads_channels: int,
43
+ output_dim: int = None,
44
+ ):
45
+ super().__init__()
46
+ self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
47
+ self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
48
+ self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
49
+ self.num_heads = embed_dim // num_heads_channels
50
+ self.attention = QKVAttention(self.num_heads)
51
+
52
+ def forward(self, x):
53
+ b, c, *_spatial = x.shape
54
+ x = x.reshape(b, c, -1) # NC(HW)
55
+ x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
56
+ x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
57
+ x = self.qkv_proj(x)
58
+ x = self.attention(x)
59
+ x = self.c_proj(x)
60
+ return x[:, :, 0]
61
+
62
+
63
+ class TimestepBlock(nn.Module):
64
+ """
65
+ Any module where forward() takes timestep embeddings as a second argument.
66
+ """
67
+
68
+ @abstractmethod
69
+ def forward(self, x, emb):
70
+ """
71
+ Apply the module to `x` given `emb` timestep embeddings.
72
+ """
73
+
74
+
75
+ class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
76
+ """
77
+ A sequential module that passes timestep embeddings to the children that
78
+ support it as an extra input.
79
+ """
80
+
81
+ def forward(self, x, emb, context=None):
82
+ for layer in self:
83
+ if isinstance(layer, TimestepBlock):
84
+ x = layer(x, emb)
85
+ elif isinstance(layer, SpatialTransformer):
86
+ x = layer(x, context)
87
+ else:
88
+ x = layer(x)
89
+ return x
90
+
91
+
92
+ class Upsample(nn.Module):
93
+ """
94
+ An upsampling layer with an optional convolution.
95
+ :param channels: channels in the inputs and outputs.
96
+ :param use_conv: a bool determining if a convolution is applied.
97
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
98
+ upsampling occurs in the inner-two dimensions.
99
+ """
100
+
101
+ def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
102
+ super().__init__()
103
+ self.channels = channels
104
+ self.out_channels = out_channels or channels
105
+ self.use_conv = use_conv
106
+ self.dims = dims
107
+ if use_conv:
108
+ self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
109
+
110
+ def forward(self, x):
111
+ assert x.shape[1] == self.channels
112
+ if self.dims == 3:
113
+ x = F.interpolate(
114
+ x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
115
+ )
116
+ else:
117
+ x = F.interpolate(x, scale_factor=2, mode="nearest")
118
+ if self.use_conv:
119
+ x = self.conv(x)
120
+ return x
121
+
122
+ class TransposedUpsample(nn.Module):
123
+ 'Learned 2x upsampling without padding'
124
+ def __init__(self, channels, out_channels=None, ks=5):
125
+ super().__init__()
126
+ self.channels = channels
127
+ self.out_channels = out_channels or channels
128
+
129
+ self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
130
+
131
+ def forward(self,x):
132
+ return self.up(x)
133
+
134
+
135
+ class Downsample(nn.Module):
136
+ """
137
+ A downsampling layer with an optional convolution.
138
+ :param channels: channels in the inputs and outputs.
139
+ :param use_conv: a bool determining if a convolution is applied.
140
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
141
+ downsampling occurs in the inner-two dimensions.
142
+ """
143
+
144
+ def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
145
+ super().__init__()
146
+ self.channels = channels
147
+ self.out_channels = out_channels or channels
148
+ self.use_conv = use_conv
149
+ self.dims = dims
150
+ stride = 2 if dims != 3 else (1, 2, 2)
151
+ if use_conv:
152
+ self.op = conv_nd(
153
+ dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
154
+ )
155
+ else:
156
+ assert self.channels == self.out_channels
157
+ self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
158
+
159
+ def forward(self, x):
160
+ assert x.shape[1] == self.channels
161
+ return self.op(x)
162
+
163
+
164
+ class ResBlock(TimestepBlock):
165
+ """
166
+ A residual block that can optionally change the number of channels.
167
+ :param channels: the number of input channels.
168
+ :param emb_channels: the number of timestep embedding channels.
169
+ :param dropout: the rate of dropout.
170
+ :param out_channels: if specified, the number of out channels.
171
+ :param use_conv: if True and out_channels is specified, use a spatial
172
+ convolution instead of a smaller 1x1 convolution to change the
173
+ channels in the skip connection.
174
+ :param dims: determines if the signal is 1D, 2D, or 3D.
175
+ :param use_checkpoint: if True, use gradient checkpointing on this module.
176
+ :param up: if True, use this block for upsampling.
177
+ :param down: if True, use this block for downsampling.
178
+ """
179
+
180
+ def __init__(
181
+ self,
182
+ channels,
183
+ emb_channels,
184
+ dropout,
185
+ out_channels=None,
186
+ use_conv=False,
187
+ use_scale_shift_norm=False,
188
+ dims=2,
189
+ use_checkpoint=False,
190
+ up=False,
191
+ down=False,
192
+ ):
193
+ super().__init__()
194
+ self.channels = channels
195
+ self.emb_channels = emb_channels
196
+ self.dropout = dropout
197
+ self.out_channels = out_channels or channels
198
+ self.use_conv = use_conv
199
+ self.use_checkpoint = use_checkpoint
200
+ self.use_scale_shift_norm = use_scale_shift_norm
201
+
202
+ self.in_layers = nn.Sequential(
203
+ normalization(channels),
204
+ nn.SiLU(),
205
+ conv_nd(dims, channels, self.out_channels, 3, padding=1),
206
+ )
207
+
208
+ self.updown = up or down
209
+
210
+ if up:
211
+ self.h_upd = Upsample(channels, False, dims)
212
+ self.x_upd = Upsample(channels, False, dims)
213
+ elif down:
214
+ self.h_upd = Downsample(channels, False, dims)
215
+ self.x_upd = Downsample(channels, False, dims)
216
+ else:
217
+ self.h_upd = self.x_upd = nn.Identity()
218
+
219
+ self.emb_layers = nn.Sequential(
220
+ nn.SiLU(),
221
+ linear(
222
+ emb_channels,
223
+ 2 * self.out_channels if use_scale_shift_norm else self.out_channels,
224
+ ),
225
+ )
226
+ self.out_layers = nn.Sequential(
227
+ normalization(self.out_channels),
228
+ nn.SiLU(),
229
+ nn.Dropout(p=dropout),
230
+ zero_module(
231
+ conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
232
+ ),
233
+ )
234
+
235
+ if self.out_channels == channels:
236
+ self.skip_connection = nn.Identity()
237
+ elif use_conv:
238
+ self.skip_connection = conv_nd(
239
+ dims, channels, self.out_channels, 3, padding=1
240
+ )
241
+ else:
242
+ self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
243
+
244
+ def forward(self, x, emb):
245
+ """
246
+ Apply the block to a Tensor, conditioned on a timestep embedding.
247
+ :param x: an [N x C x ...] Tensor of features.
248
+ :param emb: an [N x emb_channels] Tensor of timestep embeddings.
249
+ :return: an [N x C x ...] Tensor of outputs.
250
+ """
251
+ return checkpoint(
252
+ self._forward, (x, emb), self.parameters(), self.use_checkpoint
253
+ )
254
+
255
+
256
+ def _forward(self, x, emb):
257
+ if self.updown:
258
+ in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
259
+ h = in_rest(x)
260
+ h = self.h_upd(h)
261
+ x = self.x_upd(x)
262
+ h = in_conv(h)
263
+ else:
264
+ h = self.in_layers(x)
265
+ emb_out = self.emb_layers(emb).type(h.dtype)
266
+ while len(emb_out.shape) < len(h.shape):
267
+ emb_out = emb_out[..., None]
268
+ if self.use_scale_shift_norm:
269
+ out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
270
+ scale, shift = th.chunk(emb_out, 2, dim=1)
271
+ h = out_norm(h) * (1 + scale) + shift
272
+ h = out_rest(h)
273
+ else:
274
+ h = h + emb_out
275
+ h = self.out_layers(h)
276
+ return self.skip_connection(x) + h
277
+
278
+
279
+ class AttentionBlock(nn.Module):
280
+ """
281
+ An attention block that allows spatial positions to attend to each other.
282
+ Originally ported from here, but adapted to the N-d case.
283
+ https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
284
+ """
285
+
286
+ def __init__(
287
+ self,
288
+ channels,
289
+ num_heads=1,
290
+ num_head_channels=-1,
291
+ use_checkpoint=False,
292
+ use_new_attention_order=False,
293
+ ):
294
+ super().__init__()
295
+ self.channels = channels
296
+ if num_head_channels == -1:
297
+ self.num_heads = num_heads
298
+ else:
299
+ assert (
300
+ channels % num_head_channels == 0
301
+ ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
302
+ self.num_heads = channels // num_head_channels
303
+ self.use_checkpoint = use_checkpoint
304
+ self.norm = normalization(channels)
305
+ self.qkv = conv_nd(1, channels, channels * 3, 1)
306
+ if use_new_attention_order:
307
+ # split qkv before split heads
308
+ self.attention = QKVAttention(self.num_heads)
309
+ else:
310
+ # split heads before split qkv
311
+ self.attention = QKVAttentionLegacy(self.num_heads)
312
+
313
+ self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
314
+
315
+ def forward(self, x):
316
+ return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
317
+ #return pt_checkpoint(self._forward, x) # pytorch
318
+
319
+ def _forward(self, x):
320
+ b, c, *spatial = x.shape
321
+ x = x.reshape(b, c, -1)
322
+ qkv = self.qkv(self.norm(x))
323
+ h = self.attention(qkv)
324
+ h = self.proj_out(h)
325
+ return (x + h).reshape(b, c, *spatial)
326
+
327
+
328
+ def count_flops_attn(model, _x, y):
329
+ """
330
+ A counter for the `thop` package to count the operations in an
331
+ attention operation.
332
+ Meant to be used like:
333
+ macs, params = thop.profile(
334
+ model,
335
+ inputs=(inputs, timestamps),
336
+ custom_ops={QKVAttention: QKVAttention.count_flops},
337
+ )
338
+ """
339
+ b, c, *spatial = y[0].shape
340
+ num_spatial = int(np.prod(spatial))
341
+ # We perform two matmuls with the same number of ops.
342
+ # The first computes the weight matrix, the second computes
343
+ # the combination of the value vectors.
344
+ matmul_ops = 2 * b * (num_spatial ** 2) * c
345
+ model.total_ops += th.DoubleTensor([matmul_ops])
346
+
347
+
348
+ class QKVAttentionLegacy(nn.Module):
349
+ """
350
+ A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
351
+ """
352
+
353
+ def __init__(self, n_heads):
354
+ super().__init__()
355
+ self.n_heads = n_heads
356
+
357
+ def forward(self, qkv):
358
+ """
359
+ Apply QKV attention.
360
+ :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
361
+ :return: an [N x (H * C) x T] tensor after attention.
362
+ """
363
+ bs, width, length = qkv.shape
364
+ assert width % (3 * self.n_heads) == 0
365
+ ch = width // (3 * self.n_heads)
366
+ q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
367
+ scale = 1 / math.sqrt(math.sqrt(ch))
368
+ weight = th.einsum(
369
+ "bct,bcs->bts", q * scale, k * scale
370
+ ) # More stable with f16 than dividing afterwards
371
+ weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
372
+ a = th.einsum("bts,bcs->bct", weight, v)
373
+ return a.reshape(bs, -1, length)
374
+
375
+ @staticmethod
376
+ def count_flops(model, _x, y):
377
+ return count_flops_attn(model, _x, y)
378
+
379
+
380
+ class QKVAttention(nn.Module):
381
+ """
382
+ A module which performs QKV attention and splits in a different order.
383
+ """
384
+
385
+ def __init__(self, n_heads):
386
+ super().__init__()
387
+ self.n_heads = n_heads
388
+
389
+ def forward(self, qkv):
390
+ """
391
+ Apply QKV attention.
392
+ :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
393
+ :return: an [N x (H * C) x T] tensor after attention.
394
+ """
395
+ bs, width, length = qkv.shape
396
+ assert width % (3 * self.n_heads) == 0
397
+ ch = width // (3 * self.n_heads)
398
+ q, k, v = qkv.chunk(3, dim=1)
399
+ scale = 1 / math.sqrt(math.sqrt(ch))
400
+ weight = th.einsum(
401
+ "bct,bcs->bts",
402
+ (q * scale).view(bs * self.n_heads, ch, length),
403
+ (k * scale).view(bs * self.n_heads, ch, length),
404
+ ) # More stable with f16 than dividing afterwards
405
+ weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
406
+ a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
407
+ return a.reshape(bs, -1, length)
408
+
409
+ @staticmethod
410
+ def count_flops(model, _x, y):
411
+ return count_flops_attn(model, _x, y)
412
+
413
+
414
+ class UNetModel(nn.Module):
415
+ """
416
+ The full UNet model with attention and timestep embedding.
417
+ :param in_channels: channels in the input Tensor.
418
+ :param model_channels: base channel count for the model.
419
+ :param out_channels: channels in the output Tensor.
420
+ :param num_res_blocks: number of residual blocks per downsample.
421
+ :param attention_resolutions: a collection of downsample rates at which
422
+ attention will take place. May be a set, list, or tuple.
423
+ For example, if this contains 4, then at 4x downsampling, attention
424
+ will be used.
425
+ :param dropout: the dropout probability.
426
+ :param channel_mult: channel multiplier for each level of the UNet.
427
+ :param conv_resample: if True, use learned convolutions for upsampling and
428
+ downsampling.
429
+ :param dims: determines if the signal is 1D, 2D, or 3D.
430
+ :param num_classes: if specified (as an int), then this model will be
431
+ class-conditional with `num_classes` classes.
432
+ :param use_checkpoint: use gradient checkpointing to reduce memory usage.
433
+ :param num_heads: the number of attention heads in each attention layer.
434
+ :param num_heads_channels: if specified, ignore num_heads and instead use
435
+ a fixed channel width per attention head.
436
+ :param num_heads_upsample: works with num_heads to set a different number
437
+ of heads for upsampling. Deprecated.
438
+ :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
439
+ :param resblock_updown: use residual blocks for up/downsampling.
440
+ :param use_new_attention_order: use a different attention pattern for potentially
441
+ increased efficiency.
442
+ """
443
+
444
+ def __init__(
445
+ self,
446
+ image_size,
447
+ in_channels,
448
+ model_channels,
449
+ out_channels,
450
+ num_res_blocks,
451
+ attention_resolutions,
452
+ dropout=0,
453
+ channel_mult=(1, 2, 4, 8),
454
+ conv_resample=True,
455
+ dims=2,
456
+ num_classes=None,
457
+ use_checkpoint=False,
458
+ use_fp16=False,
459
+ num_heads=-1,
460
+ num_head_channels=-1,
461
+ num_heads_upsample=-1,
462
+ use_scale_shift_norm=False,
463
+ resblock_updown=False,
464
+ use_new_attention_order=False,
465
+ use_spatial_transformer=False, # custom transformer support
466
+ transformer_depth=1, # custom transformer support
467
+ context_dim=None, # custom transformer support
468
+ n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
469
+ legacy=True,
470
+ disable_self_attentions=None,
471
+ num_attention_blocks=None,
472
+ cross_domain_cfg=None
473
+ ):
474
+ super().__init__()
475
+ if use_spatial_transformer:
476
+ assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
477
+
478
+ if context_dim is not None:
479
+ assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
480
+ from omegaconf.listconfig import ListConfig
481
+ if type(context_dim) == ListConfig:
482
+ context_dim = list(context_dim)
483
+
484
+ if num_heads_upsample == -1:
485
+ num_heads_upsample = num_heads
486
+
487
+ if num_heads == -1:
488
+ assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
489
+
490
+ if num_head_channels == -1:
491
+ assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
492
+
493
+ self.image_size = image_size
494
+ self.in_channels = in_channels
495
+ self.model_channels = model_channels
496
+ self.out_channels = out_channels
497
+ if isinstance(num_res_blocks, int):
498
+ self.num_res_blocks = len(channel_mult) * [num_res_blocks]
499
+ else:
500
+ if len(num_res_blocks) != len(channel_mult):
501
+ raise ValueError("provide num_res_blocks either as an int (globally constant) or "
502
+ "as a list/tuple (per-level) with the same length as channel_mult")
503
+ self.num_res_blocks = num_res_blocks
504
+ #self.num_res_blocks = num_res_blocks
505
+ if disable_self_attentions is not None:
506
+ # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
507
+ assert len(disable_self_attentions) == len(channel_mult)
508
+ if num_attention_blocks is not None:
509
+ assert len(num_attention_blocks) == len(self.num_res_blocks)
510
+ assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
511
+ print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
512
+ f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
513
+ f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
514
+ f"attention will still not be set.") # todo: convert to warning
515
+
516
+ self.attention_resolutions = attention_resolutions
517
+ self.dropout = dropout
518
+ self.channel_mult = channel_mult
519
+ self.conv_resample = conv_resample
520
+ self.num_classes = num_classes
521
+ self.use_checkpoint = use_checkpoint
522
+ self.dtype = th.float16 if use_fp16 else th.float32
523
+ self.num_heads = num_heads
524
+ self.num_head_channels = num_head_channels
525
+ self.num_heads_upsample = num_heads_upsample
526
+ self.predict_codebook_ids = n_embed is not None
527
+
528
+ time_embed_dim = model_channels * 4
529
+ self.time_embed = nn.Sequential(
530
+ linear(model_channels, time_embed_dim),
531
+ nn.SiLU(),
532
+ linear(time_embed_dim, time_embed_dim),
533
+ )
534
+
535
+ if self.num_classes is not None:
536
+ self.label_emb = nn.Embedding(num_classes, time_embed_dim)
537
+
538
+ self.input_blocks = nn.ModuleList(
539
+ [
540
+ TimestepEmbedSequential(
541
+ conv_nd(dims, in_channels, model_channels, 3, padding=1)
542
+ )
543
+ ]
544
+ )
545
+ self._feature_size = model_channels
546
+ input_block_chans = [model_channels]
547
+ ch = model_channels
548
+ ds = 1
549
+ for level, mult in enumerate(channel_mult):
550
+ for nr in range(self.num_res_blocks[level]):
551
+ layers = [
552
+ ResBlock(
553
+ ch,
554
+ time_embed_dim,
555
+ dropout,
556
+ out_channels=mult * model_channels,
557
+ dims=dims,
558
+ use_checkpoint=use_checkpoint,
559
+ use_scale_shift_norm=use_scale_shift_norm,
560
+ )
561
+ ]
562
+ ch = mult * model_channels
563
+ if ds in attention_resolutions:
564
+ if num_head_channels == -1:
565
+ dim_head = ch // num_heads
566
+ else:
567
+ num_heads = ch // num_head_channels
568
+ dim_head = num_head_channels
569
+ if legacy:
570
+ #num_heads = 1
571
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
572
+ if exists(disable_self_attentions):
573
+ disabled_sa = disable_self_attentions[level]
574
+ else:
575
+ disabled_sa = False
576
+
577
+ if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
578
+ layers.append(
579
+ AttentionBlock(
580
+ ch,
581
+ use_checkpoint=use_checkpoint,
582
+ num_heads=num_heads,
583
+ num_head_channels=dim_head,
584
+ use_new_attention_order=use_new_attention_order,
585
+ ) if not use_spatial_transformer else SpatialTransformer(
586
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
587
+ disable_self_attn=disabled_sa, cross_domain_cfg=cross_domain_cfg,
588
+ )
589
+ )
590
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
591
+ self._feature_size += ch
592
+ input_block_chans.append(ch)
593
+ if level != len(channel_mult) - 1:
594
+ out_ch = ch
595
+ self.input_blocks.append(
596
+ TimestepEmbedSequential(
597
+ ResBlock(
598
+ ch,
599
+ time_embed_dim,
600
+ dropout,
601
+ out_channels=out_ch,
602
+ dims=dims,
603
+ use_checkpoint=use_checkpoint,
604
+ use_scale_shift_norm=use_scale_shift_norm,
605
+ down=True,
606
+ )
607
+ if resblock_updown
608
+ else Downsample(
609
+ ch, conv_resample, dims=dims, out_channels=out_ch
610
+ )
611
+ )
612
+ )
613
+ ch = out_ch
614
+ input_block_chans.append(ch)
615
+ ds *= 2
616
+ self._feature_size += ch
617
+
618
+ if num_head_channels == -1:
619
+ dim_head = ch // num_heads
620
+ else:
621
+ num_heads = ch // num_head_channels
622
+ dim_head = num_head_channels
623
+ if legacy:
624
+ #num_heads = 1
625
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
626
+ self.middle_block = TimestepEmbedSequential(
627
+ ResBlock(
628
+ ch,
629
+ time_embed_dim,
630
+ dropout,
631
+ dims=dims,
632
+ use_checkpoint=use_checkpoint,
633
+ use_scale_shift_norm=use_scale_shift_norm,
634
+ ),
635
+ AttentionBlock(
636
+ ch,
637
+ use_checkpoint=use_checkpoint,
638
+ num_heads=num_heads,
639
+ num_head_channels=dim_head,
640
+ use_new_attention_order=use_new_attention_order,
641
+ ) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
642
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
643
+ cross_domain_cfg=cross_domain_cfg,
644
+ ),
645
+ ResBlock(
646
+ ch,
647
+ time_embed_dim,
648
+ dropout,
649
+ dims=dims,
650
+ use_checkpoint=use_checkpoint,
651
+ use_scale_shift_norm=use_scale_shift_norm,
652
+ ),
653
+ )
654
+ self._feature_size += ch
655
+
656
+ self.output_blocks = nn.ModuleList([])
657
+ for level, mult in list(enumerate(channel_mult))[::-1]:
658
+ for i in range(self.num_res_blocks[level] + 1):
659
+ ich = input_block_chans.pop()
660
+ layers = [
661
+ ResBlock(
662
+ ch + ich,
663
+ time_embed_dim,
664
+ dropout,
665
+ out_channels=model_channels * mult,
666
+ dims=dims,
667
+ use_checkpoint=use_checkpoint,
668
+ use_scale_shift_norm=use_scale_shift_norm,
669
+ )
670
+ ]
671
+ ch = model_channels * mult
672
+ if ds in attention_resolutions:
673
+ if num_head_channels == -1:
674
+ dim_head = ch // num_heads
675
+ else:
676
+ num_heads = ch // num_head_channels
677
+ dim_head = num_head_channels
678
+ if legacy:
679
+ #num_heads = 1
680
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
681
+ if exists(disable_self_attentions):
682
+ disabled_sa = disable_self_attentions[level]
683
+ else:
684
+ disabled_sa = False
685
+
686
+ if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
687
+ layers.append(
688
+ AttentionBlock(
689
+ ch,
690
+ use_checkpoint=use_checkpoint,
691
+ num_heads=num_heads_upsample,
692
+ num_head_channels=dim_head,
693
+ use_new_attention_order=use_new_attention_order,
694
+ ) if not use_spatial_transformer else SpatialTransformer(
695
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
696
+ disable_self_attn=disabled_sa, cross_domain_cfg=cross_domain_cfg,
697
+ )
698
+ )
699
+ if level and i == self.num_res_blocks[level]:
700
+ out_ch = ch
701
+ layers.append(
702
+ ResBlock(
703
+ ch,
704
+ time_embed_dim,
705
+ dropout,
706
+ out_channels=out_ch,
707
+ dims=dims,
708
+ use_checkpoint=use_checkpoint,
709
+ use_scale_shift_norm=use_scale_shift_norm,
710
+ up=True,
711
+ )
712
+ if resblock_updown
713
+ else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
714
+ )
715
+ ds //= 2
716
+ self.output_blocks.append(TimestepEmbedSequential(*layers))
717
+ self._feature_size += ch
718
+
719
+ self.out = nn.Sequential(
720
+ normalization(ch),
721
+ nn.SiLU(),
722
+ zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
723
+ )
724
+ if self.predict_codebook_ids:
725
+ self.id_predictor = nn.Sequential(
726
+ normalization(ch),
727
+ conv_nd(dims, model_channels, n_embed, 1),
728
+ #nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
729
+ )
730
+
731
+ def convert_to_fp16(self):
732
+ """
733
+ Convert the torso of the model to float16.
734
+ """
735
+ self.input_blocks.apply(convert_module_to_f16)
736
+ self.middle_block.apply(convert_module_to_f16)
737
+ self.output_blocks.apply(convert_module_to_f16)
738
+
739
+ def convert_to_fp32(self):
740
+ """
741
+ Convert the torso of the model to float32.
742
+ """
743
+ self.input_blocks.apply(convert_module_to_f32)
744
+ self.middle_block.apply(convert_module_to_f32)
745
+ self.output_blocks.apply(convert_module_to_f32)
746
+
747
+ def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
748
+ """
749
+ Apply the model to an input batch.
750
+ :param x: an [N x C x ...] Tensor of inputs.
751
+ :param timesteps: a 1-D batch of timesteps.
752
+ :param context: conditioning plugged in via crossattn
753
+ :param y: an [N] Tensor of labels, if class-conditional.
754
+ :return: an [N x C x ...] Tensor of outputs.
755
+ """
756
+ assert (y is not None) == (
757
+ self.num_classes is not None
758
+ ), "must specify y if and only if the model is class-conditional"
759
+ hs = []
760
+ t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
761
+ emb = self.time_embed(t_emb)
762
+
763
+ if self.num_classes is not None:
764
+ assert y.shape == (x.shape[0],)
765
+ emb = emb + self.label_emb(y)
766
+
767
+ h = x.type(self.dtype)
768
+ for module in self.input_blocks:
769
+ h = module(h, emb, context)
770
+ hs.append(h)
771
+ h = self.middle_block(h, emb, context)
772
+ for module in self.output_blocks:
773
+ h = th.cat([h, hs.pop()], dim=1)
774
+ h = module(h, emb, context)
775
+ h = h.type(x.dtype)
776
+ if self.predict_codebook_ids:
777
+ return self.id_predictor(h)
778
+ else:
779
+ return self.out(h)
780
+
781
+
782
+ class EncoderUNetModel(nn.Module):
783
+ """
784
+ The half UNet model with attention and timestep embedding.
785
+ For usage, see UNet.
786
+ """
787
+
788
+ def __init__(
789
+ self,
790
+ image_size,
791
+ in_channels,
792
+ model_channels,
793
+ out_channels,
794
+ num_res_blocks,
795
+ attention_resolutions,
796
+ dropout=0,
797
+ channel_mult=(1, 2, 4, 8),
798
+ conv_resample=True,
799
+ dims=2,
800
+ use_checkpoint=False,
801
+ use_fp16=False,
802
+ num_heads=1,
803
+ num_head_channels=-1,
804
+ num_heads_upsample=-1,
805
+ use_scale_shift_norm=False,
806
+ resblock_updown=False,
807
+ use_new_attention_order=False,
808
+ pool="adaptive",
809
+ *args,
810
+ **kwargs
811
+ ):
812
+ super().__init__()
813
+
814
+ if num_heads_upsample == -1:
815
+ num_heads_upsample = num_heads
816
+
817
+ self.in_channels = in_channels
818
+ self.model_channels = model_channels
819
+ self.out_channels = out_channels
820
+ self.num_res_blocks = num_res_blocks
821
+ self.attention_resolutions = attention_resolutions
822
+ self.dropout = dropout
823
+ self.channel_mult = channel_mult
824
+ self.conv_resample = conv_resample
825
+ self.use_checkpoint = use_checkpoint
826
+ self.dtype = th.float16 if use_fp16 else th.float32
827
+ self.num_heads = num_heads
828
+ self.num_head_channels = num_head_channels
829
+ self.num_heads_upsample = num_heads_upsample
830
+
831
+ time_embed_dim = model_channels * 4
832
+ self.time_embed = nn.Sequential(
833
+ linear(model_channels, time_embed_dim),
834
+ nn.SiLU(),
835
+ linear(time_embed_dim, time_embed_dim),
836
+ )
837
+
838
+ self.input_blocks = nn.ModuleList(
839
+ [
840
+ TimestepEmbedSequential(
841
+ conv_nd(dims, in_channels, model_channels, 3, padding=1)
842
+ )
843
+ ]
844
+ )
845
+ self._feature_size = model_channels
846
+ input_block_chans = [model_channels]
847
+ ch = model_channels
848
+ ds = 1
849
+ for level, mult in enumerate(channel_mult):
850
+ for _ in range(num_res_blocks):
851
+ layers = [
852
+ ResBlock(
853
+ ch,
854
+ time_embed_dim,
855
+ dropout,
856
+ out_channels=mult * model_channels,
857
+ dims=dims,
858
+ use_checkpoint=use_checkpoint,
859
+ use_scale_shift_norm=use_scale_shift_norm,
860
+ )
861
+ ]
862
+ ch = mult * model_channels
863
+ if ds in attention_resolutions:
864
+ layers.append(
865
+ AttentionBlock(
866
+ ch,
867
+ use_checkpoint=use_checkpoint,
868
+ num_heads=num_heads,
869
+ num_head_channels=num_head_channels,
870
+ use_new_attention_order=use_new_attention_order,
871
+ )
872
+ )
873
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
874
+ self._feature_size += ch
875
+ input_block_chans.append(ch)
876
+ if level != len(channel_mult) - 1:
877
+ out_ch = ch
878
+ self.input_blocks.append(
879
+ TimestepEmbedSequential(
880
+ ResBlock(
881
+ ch,
882
+ time_embed_dim,
883
+ dropout,
884
+ out_channels=out_ch,
885
+ dims=dims,
886
+ use_checkpoint=use_checkpoint,
887
+ use_scale_shift_norm=use_scale_shift_norm,
888
+ down=True,
889
+ )
890
+ if resblock_updown
891
+ else Downsample(
892
+ ch, conv_resample, dims=dims, out_channels=out_ch
893
+ )
894
+ )
895
+ )
896
+ ch = out_ch
897
+ input_block_chans.append(ch)
898
+ ds *= 2
899
+ self._feature_size += ch
900
+
901
+ self.middle_block = TimestepEmbedSequential(
902
+ ResBlock(
903
+ ch,
904
+ time_embed_dim,
905
+ dropout,
906
+ dims=dims,
907
+ use_checkpoint=use_checkpoint,
908
+ use_scale_shift_norm=use_scale_shift_norm,
909
+ ),
910
+ AttentionBlock(
911
+ ch,
912
+ use_checkpoint=use_checkpoint,
913
+ num_heads=num_heads,
914
+ num_head_channels=num_head_channels,
915
+ use_new_attention_order=use_new_attention_order,
916
+ ),
917
+ ResBlock(
918
+ ch,
919
+ time_embed_dim,
920
+ dropout,
921
+ dims=dims,
922
+ use_checkpoint=use_checkpoint,
923
+ use_scale_shift_norm=use_scale_shift_norm,
924
+ ),
925
+ )
926
+ self._feature_size += ch
927
+ self.pool = pool
928
+ if pool == "adaptive":
929
+ self.out = nn.Sequential(
930
+ normalization(ch),
931
+ nn.SiLU(),
932
+ nn.AdaptiveAvgPool2d((1, 1)),
933
+ zero_module(conv_nd(dims, ch, out_channels, 1)),
934
+ nn.Flatten(),
935
+ )
936
+ elif pool == "attention":
937
+ assert num_head_channels != -1
938
+ self.out = nn.Sequential(
939
+ normalization(ch),
940
+ nn.SiLU(),
941
+ AttentionPool2d(
942
+ (image_size // ds), ch, num_head_channels, out_channels
943
+ ),
944
+ )
945
+ elif pool == "spatial":
946
+ self.out = nn.Sequential(
947
+ nn.Linear(self._feature_size, 2048),
948
+ nn.ReLU(),
949
+ nn.Linear(2048, self.out_channels),
950
+ )
951
+ elif pool == "spatial_v2":
952
+ self.out = nn.Sequential(
953
+ nn.Linear(self._feature_size, 2048),
954
+ normalization(2048),
955
+ nn.SiLU(),
956
+ nn.Linear(2048, self.out_channels),
957
+ )
958
+ else:
959
+ raise NotImplementedError(f"Unexpected {pool} pooling")
960
+
961
+ def convert_to_fp16(self):
962
+ """
963
+ Convert the torso of the model to float16.
964
+ """
965
+ self.input_blocks.apply(convert_module_to_f16)
966
+ self.middle_block.apply(convert_module_to_f16)
967
+
968
+ def convert_to_fp32(self):
969
+ """
970
+ Convert the torso of the model to float32.
971
+ """
972
+ self.input_blocks.apply(convert_module_to_f32)
973
+ self.middle_block.apply(convert_module_to_f32)
974
+
975
+ def forward(self, x, timesteps):
976
+ """
977
+ Apply the model to an input batch.
978
+ :param x: an [N x C x ...] Tensor of inputs.
979
+ :param timesteps: a 1-D batch of timesteps.
980
+ :return: an [N x K] Tensor of outputs.
981
+ """
982
+ emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
983
+
984
+ results = []
985
+ h = x.type(self.dtype)
986
+ for module in self.input_blocks:
987
+ h = module(h, emb)
988
+ if self.pool.startswith("spatial"):
989
+ results.append(h.type(x.dtype).mean(dim=(2, 3)))
990
+ h = self.middle_block(h, emb)
991
+ if self.pool.startswith("spatial"):
992
+ results.append(h.type(x.dtype).mean(dim=(2, 3)))
993
+ h = th.cat(results, axis=-1)
994
+ return self.out(h)
995
+ else:
996
+ h = h.type(x.dtype)
997
+ return self.out(h)
998
+
models/ldm/modules/diffusionmodules/util.py ADDED
@@ -0,0 +1,267 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # adopted from
2
+ # https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
3
+ # and
4
+ # https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
5
+ # and
6
+ # https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
7
+ #
8
+ # thanks!
9
+
10
+
11
+ import os
12
+ import math
13
+ import torch
14
+ import torch.nn as nn
15
+ import numpy as np
16
+ from einops import repeat
17
+
18
+ from ldm.util import instantiate_from_config
19
+
20
+
21
+ def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
22
+ if schedule == "linear":
23
+ betas = (
24
+ torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
25
+ )
26
+
27
+ elif schedule == "cosine":
28
+ timesteps = (
29
+ torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
30
+ )
31
+ alphas = timesteps / (1 + cosine_s) * np.pi / 2
32
+ alphas = torch.cos(alphas).pow(2)
33
+ alphas = alphas / alphas[0]
34
+ betas = 1 - alphas[1:] / alphas[:-1]
35
+ betas = np.clip(betas, a_min=0, a_max=0.999)
36
+
37
+ elif schedule == "sqrt_linear":
38
+ betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
39
+ elif schedule == "sqrt":
40
+ betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
41
+ else:
42
+ raise ValueError(f"schedule '{schedule}' unknown.")
43
+ return betas.numpy()
44
+
45
+
46
+ def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
47
+ if ddim_discr_method == 'uniform':
48
+ c = num_ddpm_timesteps // num_ddim_timesteps
49
+ ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
50
+ elif ddim_discr_method == 'quad':
51
+ ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
52
+ else:
53
+ raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
54
+
55
+ # assert ddim_timesteps.shape[0] == num_ddim_timesteps
56
+ # add one to get the final alpha values right (the ones from first scale to data during sampling)
57
+ steps_out = ddim_timesteps + 1
58
+ if verbose:
59
+ print(f'Selected timesteps for ddim sampler: {steps_out}')
60
+ return steps_out
61
+
62
+
63
+ def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
64
+ # select alphas for computing the variance schedule
65
+ alphas = alphacums[ddim_timesteps]
66
+ alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
67
+
68
+ # according the the formula provided in https://arxiv.org/abs/2010.02502
69
+ sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
70
+ if verbose:
71
+ print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
72
+ print(f'For the chosen value of eta, which is {eta}, '
73
+ f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
74
+ return sigmas, alphas, alphas_prev
75
+
76
+
77
+ def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
78
+ """
79
+ Create a beta schedule that discretizes the given alpha_t_bar function,
80
+ which defines the cumulative product of (1-beta) over time from t = [0,1].
81
+ :param num_diffusion_timesteps: the number of betas to produce.
82
+ :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
83
+ produces the cumulative product of (1-beta) up to that
84
+ part of the diffusion process.
85
+ :param max_beta: the maximum beta to use; use values lower than 1 to
86
+ prevent singularities.
87
+ """
88
+ betas = []
89
+ for i in range(num_diffusion_timesteps):
90
+ t1 = i / num_diffusion_timesteps
91
+ t2 = (i + 1) / num_diffusion_timesteps
92
+ betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
93
+ return np.array(betas)
94
+
95
+
96
+ def extract_into_tensor(a, t, x_shape):
97
+ b, *_ = t.shape
98
+ out = a.gather(-1, t)
99
+ return out.reshape(b, *((1,) * (len(x_shape) - 1)))
100
+
101
+
102
+ def checkpoint(func, inputs, params, flag):
103
+ """
104
+ Evaluate a function without caching intermediate activations, allowing for
105
+ reduced memory at the expense of extra compute in the backward pass.
106
+ :param func: the function to evaluate.
107
+ :param inputs: the argument sequence to pass to `func`.
108
+ :param params: a sequence of parameters `func` depends on but does not
109
+ explicitly take as arguments.
110
+ :param flag: if False, disable gradient checkpointing.
111
+ """
112
+ if flag:
113
+ args = tuple(inputs) + tuple(params)
114
+ return CheckpointFunction.apply(func, len(inputs), *args)
115
+ else:
116
+ return func(*inputs)
117
+
118
+
119
+ class CheckpointFunction(torch.autograd.Function):
120
+ @staticmethod
121
+ def forward(ctx, run_function, length, *args):
122
+ ctx.run_function = run_function
123
+ ctx.input_tensors = list(args[:length])
124
+ ctx.input_params = list(args[length:])
125
+
126
+ with torch.no_grad():
127
+ output_tensors = ctx.run_function(*ctx.input_tensors)
128
+ return output_tensors
129
+
130
+ @staticmethod
131
+ def backward(ctx, *output_grads):
132
+ ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
133
+ with torch.enable_grad():
134
+ # Fixes a bug where the first op in run_function modifies the
135
+ # Tensor storage in place, which is not allowed for detach()'d
136
+ # Tensors.
137
+ shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
138
+ output_tensors = ctx.run_function(*shallow_copies)
139
+ input_grads = torch.autograd.grad(
140
+ output_tensors,
141
+ ctx.input_tensors + ctx.input_params,
142
+ output_grads,
143
+ allow_unused=True,
144
+ )
145
+ del ctx.input_tensors
146
+ del ctx.input_params
147
+ del output_tensors
148
+ return (None, None) + input_grads
149
+
150
+
151
+ def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
152
+ """
153
+ Create sinusoidal timestep embeddings.
154
+ :param timesteps: a 1-D Tensor of N indices, one per batch element.
155
+ These may be fractional.
156
+ :param dim: the dimension of the output.
157
+ :param max_period: controls the minimum frequency of the embeddings.
158
+ :return: an [N x dim] Tensor of positional embeddings.
159
+ """
160
+ if not repeat_only:
161
+ half = dim // 2
162
+ freqs = torch.exp(
163
+ -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
164
+ ).to(device=timesteps.device)
165
+ args = timesteps[:, None].float() * freqs[None]
166
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
167
+ if dim % 2:
168
+ embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
169
+ else:
170
+ embedding = repeat(timesteps, 'b -> b d', d=dim)
171
+ return embedding
172
+
173
+
174
+ def zero_module(module):
175
+ """
176
+ Zero out the parameters of a module and return it.
177
+ """
178
+ for p in module.parameters():
179
+ p.detach().zero_()
180
+ return module
181
+
182
+
183
+ def scale_module(module, scale):
184
+ """
185
+ Scale the parameters of a module and return it.
186
+ """
187
+ for p in module.parameters():
188
+ p.detach().mul_(scale)
189
+ return module
190
+
191
+
192
+ def mean_flat(tensor):
193
+ """
194
+ Take the mean over all non-batch dimensions.
195
+ """
196
+ return tensor.mean(dim=list(range(1, len(tensor.shape))))
197
+
198
+
199
+ def normalization(channels):
200
+ """
201
+ Make a standard normalization layer.
202
+ :param channels: number of input channels.
203
+ :return: an nn.Module for normalization.
204
+ """
205
+ return GroupNorm32(32, channels)
206
+
207
+
208
+ # PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
209
+ class SiLU(nn.Module):
210
+ def forward(self, x):
211
+ return x * torch.sigmoid(x)
212
+
213
+
214
+ class GroupNorm32(nn.GroupNorm):
215
+ def forward(self, x):
216
+ return super().forward(x.float()).type(x.dtype)
217
+
218
+ def conv_nd(dims, *args, **kwargs):
219
+ """
220
+ Create a 1D, 2D, or 3D convolution module.
221
+ """
222
+ if dims == 1:
223
+ return nn.Conv1d(*args, **kwargs)
224
+ elif dims == 2:
225
+ return nn.Conv2d(*args, **kwargs)
226
+ elif dims == 3:
227
+ return nn.Conv3d(*args, **kwargs)
228
+ raise ValueError(f"unsupported dimensions: {dims}")
229
+
230
+
231
+ def linear(*args, **kwargs):
232
+ """
233
+ Create a linear module.
234
+ """
235
+ return nn.Linear(*args, **kwargs)
236
+
237
+
238
+ def avg_pool_nd(dims, *args, **kwargs):
239
+ """
240
+ Create a 1D, 2D, or 3D average pooling module.
241
+ """
242
+ if dims == 1:
243
+ return nn.AvgPool1d(*args, **kwargs)
244
+ elif dims == 2:
245
+ return nn.AvgPool2d(*args, **kwargs)
246
+ elif dims == 3:
247
+ return nn.AvgPool3d(*args, **kwargs)
248
+ raise ValueError(f"unsupported dimensions: {dims}")
249
+
250
+
251
+ class HybridConditioner(nn.Module):
252
+
253
+ def __init__(self, c_concat_config, c_crossattn_config):
254
+ super().__init__()
255
+ self.concat_conditioner = instantiate_from_config(c_concat_config)
256
+ self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
257
+
258
+ def forward(self, c_concat, c_crossattn):
259
+ c_concat = self.concat_conditioner(c_concat)
260
+ c_crossattn = self.crossattn_conditioner(c_crossattn)
261
+ return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
262
+
263
+
264
+ def noise_like(shape, device, repeat=False):
265
+ repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
266
+ noise = lambda: torch.randn(shape, device=device)
267
+ return repeat_noise() if repeat else noise()
models/ldm/modules/distributions/__init__.py ADDED
File without changes