Spaces:
Sleeping
Sleeping
import json | |
import logging | |
import os | |
import pathlib | |
import re | |
from copy import deepcopy | |
from pathlib import Path | |
import torch | |
from .model import CLAP, convert_weights_to_fp16 | |
from .openai import load_openai_model | |
from .pretrained import get_pretrained_url, download_pretrained | |
from .transform import image_transform | |
_MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"] | |
_MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs | |
def _natural_key(string_): | |
return [int(s) if s.isdigit() else s for s in re.split(r"(\d+)", string_.lower())] | |
def _rescan_model_configs(): | |
global _MODEL_CONFIGS | |
config_ext = (".json",) | |
config_files = [] | |
for config_path in _MODEL_CONFIG_PATHS: | |
if config_path.is_file() and config_path.suffix in config_ext: | |
config_files.append(config_path) | |
elif config_path.is_dir(): | |
for ext in config_ext: | |
config_files.extend(config_path.glob(f"*{ext}")) | |
for cf in config_files: | |
if os.path.basename(cf)[0] == ".": | |
continue # Ignore hidden files | |
with open(cf, "r") as f: | |
model_cfg = json.load(f) | |
if all(a in model_cfg for a in ("embed_dim", "audio_cfg", "text_cfg")): | |
_MODEL_CONFIGS[cf.stem] = model_cfg | |
_MODEL_CONFIGS = { | |
k: v | |
for k, v in sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0])) | |
} | |
_rescan_model_configs() # initial populate of model config registry | |
def load_state_dict(checkpoint_path: str, map_location="cpu", skip_params=True): | |
checkpoint = torch.load(checkpoint_path, map_location=map_location) | |
if isinstance(checkpoint, dict) and "state_dict" in checkpoint: | |
state_dict = checkpoint["state_dict"] | |
else: | |
state_dict = checkpoint | |
if skip_params: | |
if next(iter(state_dict.items()))[0].startswith("module"): | |
state_dict = {k[7:]: v for k, v in state_dict.items()} | |
# for k in state_dict: | |
# if k.startswith('transformer'): | |
# v = state_dict.pop(k) | |
# state_dict['text_branch.' + k[12:]] = v | |
return state_dict | |
def create_model( | |
amodel_name: str, | |
tmodel_name: str, | |
pretrained: str = "", | |
precision: str = "fp32", | |
device: torch.device = torch.device("cpu"), | |
jit: bool = False, | |
force_quick_gelu: bool = False, | |
openai_model_cache_dir: str = os.path.expanduser("~/.cache/clip"), | |
skip_params=True, | |
pretrained_audio: str = "", | |
pretrained_text: str = "", | |
enable_fusion: bool = False, | |
fusion_type: str = "None" | |
# pretrained_image: bool = False, | |
): | |
amodel_name = amodel_name.replace( | |
"/", "-" | |
) # for callers using old naming with / in ViT names | |
pretrained_orig = pretrained | |
pretrained = pretrained.lower() | |
if pretrained == "openai": | |
if amodel_name in _MODEL_CONFIGS: | |
logging.info(f"Loading {amodel_name} model config.") | |
model_cfg = deepcopy(_MODEL_CONFIGS[amodel_name]) | |
else: | |
logging.error( | |
f"Model config for {amodel_name} not found; available models {list_models()}." | |
) | |
raise RuntimeError(f"Model config for {amodel_name} not found.") | |
logging.info(f"Loading pretrained ViT-B-16 text encoder from OpenAI.") | |
# Hard Code in model name | |
model_cfg["text_cfg"]["model_type"] = tmodel_name | |
model = load_openai_model( | |
"ViT-B-16", | |
model_cfg, | |
device=device, | |
jit=jit, | |
cache_dir=openai_model_cache_dir, | |
enable_fusion=enable_fusion, | |
fusion_type=fusion_type, | |
) | |
# See https://discuss.pytorch.org/t/valueerror-attemting-to-unscale-fp16-gradients/81372 | |
if precision == "amp" or precision == "fp32": | |
model = model.float() | |
else: | |
if amodel_name in _MODEL_CONFIGS: | |
logging.info(f"Loading {amodel_name} model config.") | |
model_cfg = deepcopy(_MODEL_CONFIGS[amodel_name]) | |
else: | |
logging.error( | |
f"Model config for {amodel_name} not found; available models {list_models()}." | |
) | |
raise RuntimeError(f"Model config for {amodel_name} not found.") | |
if force_quick_gelu: | |
# override for use of QuickGELU on non-OpenAI transformer models | |
model_cfg["quick_gelu"] = True | |
# if pretrained_image: | |
# if 'timm_amodel_name' in model_cfg.get('vision_cfg', {}): | |
# # pretrained weight loading for timm models set via vision_cfg | |
# model_cfg['vision_cfg']['timm_model_pretrained'] = True | |
# else: | |
# assert False, 'pretrained image towers currently only supported for timm models' | |
model_cfg["text_cfg"]["model_type"] = tmodel_name | |
model_cfg["enable_fusion"] = enable_fusion | |
model_cfg["fusion_type"] = fusion_type | |
model = CLAP(**model_cfg) | |
if pretrained: | |
checkpoint_path = "" | |
url = get_pretrained_url(amodel_name, pretrained) | |
if url: | |
checkpoint_path = download_pretrained(url, root=openai_model_cache_dir) | |
elif os.path.exists(pretrained_orig): | |
checkpoint_path = pretrained_orig | |
if checkpoint_path: | |
logging.info( | |
f"Loading pretrained {amodel_name}-{tmodel_name} weights ({pretrained})." | |
) | |
ckpt = load_state_dict(checkpoint_path, skip_params=True) | |
model.load_state_dict(ckpt) | |
param_names = [n for n, p in model.named_parameters()] | |
# for n in param_names: | |
# print(n, "\t", "Loaded" if n in ckpt else "Unloaded") | |
else: | |
logging.warning( | |
f"Pretrained weights ({pretrained}) not found for model {amodel_name}." | |
) | |
raise RuntimeError( | |
f"Pretrained weights ({pretrained}) not found for model {amodel_name}." | |
) | |
if pretrained_audio: | |
if amodel_name.startswith("PANN"): | |
if "Cnn14_mAP" in pretrained_audio: # official checkpoint | |
audio_ckpt = torch.load(pretrained_audio, map_location="cpu") | |
audio_ckpt = audio_ckpt["model"] | |
keys = list(audio_ckpt.keys()) | |
for key in keys: | |
if ( | |
"spectrogram_extractor" not in key | |
and "logmel_extractor" not in key | |
): | |
v = audio_ckpt.pop(key) | |
audio_ckpt["audio_branch." + key] = v | |
elif os.path.basename(pretrained_audio).startswith( | |
"PANN" | |
): # checkpoint trained via HTSAT codebase | |
audio_ckpt = torch.load(pretrained_audio, map_location="cpu") | |
audio_ckpt = audio_ckpt["state_dict"] | |
keys = list(audio_ckpt.keys()) | |
for key in keys: | |
if key.startswith("sed_model"): | |
v = audio_ckpt.pop(key) | |
audio_ckpt["audio_branch." + key[10:]] = v | |
elif os.path.basename(pretrained_audio).startswith( | |
"finetuned" | |
): # checkpoint trained via linear probe codebase | |
audio_ckpt = torch.load(pretrained_audio, map_location="cpu") | |
else: | |
raise ValueError("Unknown audio checkpoint") | |
elif amodel_name.startswith("HTSAT"): | |
if "HTSAT_AudioSet_Saved" in pretrained_audio: # official checkpoint | |
audio_ckpt = torch.load(pretrained_audio, map_location="cpu") | |
audio_ckpt = audio_ckpt["state_dict"] | |
keys = list(audio_ckpt.keys()) | |
for key in keys: | |
if key.startswith("sed_model") and ( | |
"spectrogram_extractor" not in key | |
and "logmel_extractor" not in key | |
): | |
v = audio_ckpt.pop(key) | |
audio_ckpt["audio_branch." + key[10:]] = v | |
elif os.path.basename(pretrained_audio).startswith( | |
"HTSAT" | |
): # checkpoint trained via HTSAT codebase | |
audio_ckpt = torch.load(pretrained_audio, map_location="cpu") | |
audio_ckpt = audio_ckpt["state_dict"] | |
keys = list(audio_ckpt.keys()) | |
for key in keys: | |
if key.startswith("sed_model"): | |
v = audio_ckpt.pop(key) | |
audio_ckpt["audio_branch." + key[10:]] = v | |
elif os.path.basename(pretrained_audio).startswith( | |
"finetuned" | |
): # checkpoint trained via linear probe codebase | |
audio_ckpt = torch.load(pretrained_audio, map_location="cpu") | |
else: | |
raise ValueError("Unknown audio checkpoint") | |
else: | |
raise f"this audio encoder pretrained checkpoint is not support" | |
model.load_state_dict(audio_ckpt, strict=False) | |
logging.info( | |
f"Loading pretrained {amodel_name} weights ({pretrained_audio})." | |
) | |
param_names = [n for n, p in model.named_parameters()] | |
for n in param_names: | |
print(n, "\t", "Loaded" if n in audio_ckpt else "Unloaded") | |
model.to(device=device) | |
if precision == "fp16": | |
assert device.type != "cpu" | |
convert_weights_to_fp16(model) | |
if jit: | |
model = torch.jit.script(model) | |
return model, model_cfg | |
def create_model_and_transforms( | |
model_name: str, | |
pretrained: str = "", | |
precision: str = "fp32", | |
device: torch.device = torch.device("cpu"), | |
jit: bool = False, | |
force_quick_gelu: bool = False, | |
# pretrained_image: bool = False, | |
): | |
model = create_model( | |
model_name, | |
pretrained, | |
precision, | |
device, | |
jit, | |
force_quick_gelu=force_quick_gelu, | |
# pretrained_image=pretrained_image | |
) | |
preprocess_train = image_transform(model.visual.image_size, is_train=True) | |
preprocess_val = image_transform(model.visual.image_size, is_train=False) | |
return model, preprocess_train, preprocess_val | |
def list_models(): | |
"""enumerate available model architectures based on config files""" | |
return list(_MODEL_CONFIGS.keys()) | |
def add_model_config(path): | |
"""add model config path or file and update registry""" | |
if not isinstance(path, Path): | |
path = Path(path) | |
_MODEL_CONFIG_PATHS.append(path) | |
_rescan_model_configs() | |