Spaces:
Sleeping
Sleeping
# Ke Chen | |
# [email protected] | |
# HTS-AT: A HIERARCHICAL TOKEN-SEMANTIC AUDIO TRANSFORMER FOR SOUND CLASSIFICATION AND DETECTION | |
# Some layers designed on the model | |
# below codes are based and referred from https://github.com/microsoft/Swin-Transformer | |
# Swin Transformer for Computer Vision: https://arxiv.org/pdf/2103.14030.pdf | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from itertools import repeat | |
import collections.abc | |
import math | |
import warnings | |
from torch.nn.init import _calculate_fan_in_and_fan_out | |
import torch.utils.checkpoint as checkpoint | |
import random | |
from torchlibrosa.stft import Spectrogram, LogmelFilterBank | |
from torchlibrosa.augmentation import SpecAugmentation | |
from itertools import repeat | |
from .utils import do_mixup, interpolate | |
from .feature_fusion import iAFF, AFF, DAF | |
# from PyTorch internals | |
def _ntuple(n): | |
def parse(x): | |
if isinstance(x, collections.abc.Iterable): | |
return x | |
return tuple(repeat(x, n)) | |
return parse | |
to_1tuple = _ntuple(1) | |
to_2tuple = _ntuple(2) | |
to_3tuple = _ntuple(3) | |
to_4tuple = _ntuple(4) | |
to_ntuple = _ntuple | |
def drop_path(x, drop_prob: float = 0.0, training: bool = False): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, | |
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... | |
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for | |
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use | |
'survival rate' as the argument. | |
""" | |
if drop_prob == 0.0 or not training: | |
return x | |
keep_prob = 1 - drop_prob | |
shape = (x.shape[0],) + (1,) * ( | |
x.ndim - 1 | |
) # work with diff dim tensors, not just 2D ConvNets | |
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) | |
random_tensor.floor_() # binarize | |
output = x.div(keep_prob) * random_tensor | |
return output | |
class DropPath(nn.Module): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" | |
def __init__(self, drop_prob=None): | |
super(DropPath, self).__init__() | |
self.drop_prob = drop_prob | |
def forward(self, x): | |
return drop_path(x, self.drop_prob, self.training) | |
class PatchEmbed(nn.Module): | |
"""2D Image to Patch Embedding""" | |
def __init__( | |
self, | |
img_size=224, | |
patch_size=16, | |
in_chans=3, | |
embed_dim=768, | |
norm_layer=None, | |
flatten=True, | |
patch_stride=16, | |
enable_fusion=False, | |
fusion_type="None", | |
): | |
super().__init__() | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
patch_stride = to_2tuple(patch_stride) | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.patch_stride = patch_stride | |
self.grid_size = ( | |
img_size[0] // patch_stride[0], | |
img_size[1] // patch_stride[1], | |
) | |
self.num_patches = self.grid_size[0] * self.grid_size[1] | |
self.flatten = flatten | |
self.in_chans = in_chans | |
self.embed_dim = embed_dim | |
self.enable_fusion = enable_fusion | |
self.fusion_type = fusion_type | |
padding = ( | |
(patch_size[0] - patch_stride[0]) // 2, | |
(patch_size[1] - patch_stride[1]) // 2, | |
) | |
if (self.enable_fusion) and (self.fusion_type == "channel_map"): | |
self.proj = nn.Conv2d( | |
in_chans * 4, | |
embed_dim, | |
kernel_size=patch_size, | |
stride=patch_stride, | |
padding=padding, | |
) | |
else: | |
self.proj = nn.Conv2d( | |
in_chans, | |
embed_dim, | |
kernel_size=patch_size, | |
stride=patch_stride, | |
padding=padding, | |
) | |
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() | |
if (self.enable_fusion) and ( | |
self.fusion_type in ["daf_2d", "aff_2d", "iaff_2d"] | |
): | |
self.mel_conv2d = nn.Conv2d( | |
in_chans, | |
embed_dim, | |
kernel_size=(patch_size[0], patch_size[1] * 3), | |
stride=(patch_stride[0], patch_stride[1] * 3), | |
padding=padding, | |
) | |
if self.fusion_type == "daf_2d": | |
self.fusion_model = DAF() | |
elif self.fusion_type == "aff_2d": | |
self.fusion_model = AFF(channels=embed_dim, type="2D") | |
elif self.fusion_type == "iaff_2d": | |
self.fusion_model = iAFF(channels=embed_dim, type="2D") | |
def forward(self, x, longer_idx=None): | |
if (self.enable_fusion) and ( | |
self.fusion_type in ["daf_2d", "aff_2d", "iaff_2d"] | |
): | |
global_x = x[:, 0:1, :, :] | |
# global processing | |
B, C, H, W = global_x.shape | |
assert ( | |
H == self.img_size[0] and W == self.img_size[1] | |
), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." | |
global_x = self.proj(global_x) | |
TW = global_x.size(-1) | |
if len(longer_idx) > 0: | |
# local processing | |
local_x = x[longer_idx, 1:, :, :].contiguous() | |
B, C, H, W = local_x.shape | |
local_x = local_x.view(B * C, 1, H, W) | |
local_x = self.mel_conv2d(local_x) | |
local_x = local_x.view( | |
B, C, local_x.size(1), local_x.size(2), local_x.size(3) | |
) | |
local_x = local_x.permute((0, 2, 3, 1, 4)).contiguous().flatten(3) | |
TB, TC, TH, _ = local_x.size() | |
if local_x.size(-1) < TW: | |
local_x = torch.cat( | |
[ | |
local_x, | |
torch.zeros( | |
(TB, TC, TH, TW - local_x.size(-1)), | |
device=global_x.device, | |
), | |
], | |
dim=-1, | |
) | |
else: | |
local_x = local_x[:, :, :, :TW] | |
global_x[longer_idx] = self.fusion_model(global_x[longer_idx], local_x) | |
x = global_x | |
else: | |
B, C, H, W = x.shape | |
assert ( | |
H == self.img_size[0] and W == self.img_size[1] | |
), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." | |
x = self.proj(x) | |
if self.flatten: | |
x = x.flatten(2).transpose(1, 2) # BCHW -> BNC | |
x = self.norm(x) | |
return x | |
class Mlp(nn.Module): | |
"""MLP as used in Vision Transformer, MLP-Mixer and related networks""" | |
def __init__( | |
self, | |
in_features, | |
hidden_features=None, | |
out_features=None, | |
act_layer=nn.GELU, | |
drop=0.0, | |
): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
def _no_grad_trunc_normal_(tensor, mean, std, a, b): | |
# Cut & paste from PyTorch official master until it's in a few official releases - RW | |
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf | |
def norm_cdf(x): | |
# Computes standard normal cumulative distribution function | |
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0 | |
if (mean < a - 2 * std) or (mean > b + 2 * std): | |
warnings.warn( | |
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " | |
"The distribution of values may be incorrect.", | |
stacklevel=2, | |
) | |
with torch.no_grad(): | |
# Values are generated by using a truncated uniform distribution and | |
# then using the inverse CDF for the normal distribution. | |
# Get upper and lower cdf values | |
l = norm_cdf((a - mean) / std) | |
u = norm_cdf((b - mean) / std) | |
# Uniformly fill tensor with values from [l, u], then translate to | |
# [2l-1, 2u-1]. | |
tensor.uniform_(2 * l - 1, 2 * u - 1) | |
# Use inverse cdf transform for normal distribution to get truncated | |
# standard normal | |
tensor.erfinv_() | |
# Transform to proper mean, std | |
tensor.mul_(std * math.sqrt(2.0)) | |
tensor.add_(mean) | |
# Clamp to ensure it's in the proper range | |
tensor.clamp_(min=a, max=b) | |
return tensor | |
def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0): | |
# type: (Tensor, float, float, float, float) -> Tensor | |
r"""Fills the input Tensor with values drawn from a truncated | |
normal distribution. The values are effectively drawn from the | |
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` | |
with values outside :math:`[a, b]` redrawn until they are within | |
the bounds. The method used for generating the random values works | |
best when :math:`a \leq \text{mean} \leq b`. | |
Args: | |
tensor: an n-dimensional `torch.Tensor` | |
mean: the mean of the normal distribution | |
std: the standard deviation of the normal distribution | |
a: the minimum cutoff value | |
b: the maximum cutoff value | |
Examples: | |
>>> w = torch.empty(3, 5) | |
>>> nn.init.trunc_normal_(w) | |
""" | |
return _no_grad_trunc_normal_(tensor, mean, std, a, b) | |
def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"): | |
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) | |
if mode == "fan_in": | |
denom = fan_in | |
elif mode == "fan_out": | |
denom = fan_out | |
elif mode == "fan_avg": | |
denom = (fan_in + fan_out) / 2 | |
variance = scale / denom | |
if distribution == "truncated_normal": | |
# constant is stddev of standard normal truncated to (-2, 2) | |
trunc_normal_(tensor, std=math.sqrt(variance) / 0.87962566103423978) | |
elif distribution == "normal": | |
tensor.normal_(std=math.sqrt(variance)) | |
elif distribution == "uniform": | |
bound = math.sqrt(3 * variance) | |
tensor.uniform_(-bound, bound) | |
else: | |
raise ValueError(f"invalid distribution {distribution}") | |
def lecun_normal_(tensor): | |
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal") | |
def window_partition(x, window_size): | |
""" | |
Args: | |
x: (B, H, W, C) | |
window_size (int): window size | |
Returns: | |
windows: (num_windows*B, window_size, window_size, C) | |
""" | |
B, H, W, C = x.shape | |
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) | |
windows = ( | |
x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) | |
) | |
return windows | |
def window_reverse(windows, window_size, H, W): | |
""" | |
Args: | |
windows: (num_windows*B, window_size, window_size, C) | |
window_size (int): Window size | |
H (int): Height of image | |
W (int): Width of image | |
Returns: | |
x: (B, H, W, C) | |
""" | |
B = int(windows.shape[0] / (H * W / window_size / window_size)) | |
x = windows.view( | |
B, H // window_size, W // window_size, window_size, window_size, -1 | |
) | |
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) | |
return x | |
class WindowAttention(nn.Module): | |
r"""Window based multi-head self attention (W-MSA) module with relative position bias. | |
It supports both of shifted and non-shifted window. | |
Args: | |
dim (int): Number of input channels. | |
window_size (tuple[int]): The height and width of the window. | |
num_heads (int): Number of attention heads. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set | |
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 | |
proj_drop (float, optional): Dropout ratio of output. Default: 0.0 | |
""" | |
def __init__( | |
self, | |
dim, | |
window_size, | |
num_heads, | |
qkv_bias=True, | |
qk_scale=None, | |
attn_drop=0.0, | |
proj_drop=0.0, | |
): | |
super().__init__() | |
self.dim = dim | |
self.window_size = window_size # Wh, Ww | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = qk_scale or head_dim**-0.5 | |
# define a parameter table of relative position bias | |
self.relative_position_bias_table = nn.Parameter( | |
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads) | |
) # 2*Wh-1 * 2*Ww-1, nH | |
# get pair-wise relative position index for each token inside the window | |
coords_h = torch.arange(self.window_size[0]) | |
coords_w = torch.arange(self.window_size[1]) | |
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww | |
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww | |
relative_coords = ( | |
coords_flatten[:, :, None] - coords_flatten[:, None, :] | |
) # 2, Wh*Ww, Wh*Ww | |
relative_coords = relative_coords.permute( | |
1, 2, 0 | |
).contiguous() # Wh*Ww, Wh*Ww, 2 | |
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 | |
relative_coords[:, :, 1] += self.window_size[1] - 1 | |
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 | |
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww | |
self.register_buffer("relative_position_index", relative_position_index) | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
trunc_normal_(self.relative_position_bias_table, std=0.02) | |
self.softmax = nn.Softmax(dim=-1) | |
def forward(self, x, mask=None): | |
""" | |
Args: | |
x: input features with shape of (num_windows*B, N, C) | |
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None | |
""" | |
B_, N, C = x.shape | |
qkv = ( | |
self.qkv(x) | |
.reshape(B_, N, 3, self.num_heads, C // self.num_heads) | |
.permute(2, 0, 3, 1, 4) | |
) | |
q, k, v = ( | |
qkv[0], | |
qkv[1], | |
qkv[2], | |
) # make torchscript happy (cannot use tensor as tuple) | |
q = q * self.scale | |
attn = q @ k.transpose(-2, -1) | |
relative_position_bias = self.relative_position_bias_table[ | |
self.relative_position_index.view(-1) | |
].view( | |
self.window_size[0] * self.window_size[1], | |
self.window_size[0] * self.window_size[1], | |
-1, | |
) # Wh*Ww,Wh*Ww,nH | |
relative_position_bias = relative_position_bias.permute( | |
2, 0, 1 | |
).contiguous() # nH, Wh*Ww, Wh*Ww | |
attn = attn + relative_position_bias.unsqueeze(0) | |
if mask is not None: | |
nW = mask.shape[0] | |
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze( | |
1 | |
).unsqueeze(0) | |
attn = attn.view(-1, self.num_heads, N, N) | |
attn = self.softmax(attn) | |
else: | |
attn = self.softmax(attn) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B_, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x, attn | |
def extra_repr(self): | |
return f"dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}" | |
# We use the model based on Swintransformer Block, therefore we can use the swin-transformer pretrained model | |
class SwinTransformerBlock(nn.Module): | |
r"""Swin Transformer Block. | |
Args: | |
dim (int): Number of input channels. | |
input_resolution (tuple[int]): Input resulotion. | |
num_heads (int): Number of attention heads. | |
window_size (int): Window size. | |
shift_size (int): Shift size for SW-MSA. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. | |
drop (float, optional): Dropout rate. Default: 0.0 | |
attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
drop_path (float, optional): Stochastic depth rate. Default: 0.0 | |
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
""" | |
def __init__( | |
self, | |
dim, | |
input_resolution, | |
num_heads, | |
window_size=7, | |
shift_size=0, | |
mlp_ratio=4.0, | |
qkv_bias=True, | |
qk_scale=None, | |
drop=0.0, | |
attn_drop=0.0, | |
drop_path=0.0, | |
act_layer=nn.GELU, | |
norm_layer=nn.LayerNorm, | |
norm_before_mlp="ln", | |
): | |
super().__init__() | |
self.dim = dim | |
self.input_resolution = input_resolution | |
self.num_heads = num_heads | |
self.window_size = window_size | |
self.shift_size = shift_size | |
self.mlp_ratio = mlp_ratio | |
self.norm_before_mlp = norm_before_mlp | |
if min(self.input_resolution) <= self.window_size: | |
# if window size is larger than input resolution, we don't partition windows | |
self.shift_size = 0 | |
self.window_size = min(self.input_resolution) | |
assert ( | |
0 <= self.shift_size < self.window_size | |
), "shift_size must in 0-window_size" | |
self.norm1 = norm_layer(dim) | |
self.attn = WindowAttention( | |
dim, | |
window_size=to_2tuple(self.window_size), | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
attn_drop=attn_drop, | |
proj_drop=drop, | |
) | |
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
if self.norm_before_mlp == "ln": | |
self.norm2 = nn.LayerNorm(dim) | |
elif self.norm_before_mlp == "bn": | |
self.norm2 = lambda x: nn.BatchNorm1d(dim)(x.transpose(1, 2)).transpose( | |
1, 2 | |
) | |
else: | |
raise NotImplementedError | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp( | |
in_features=dim, | |
hidden_features=mlp_hidden_dim, | |
act_layer=act_layer, | |
drop=drop, | |
) | |
if self.shift_size > 0: | |
# calculate attention mask for SW-MSA | |
H, W = self.input_resolution | |
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1 | |
h_slices = ( | |
slice(0, -self.window_size), | |
slice(-self.window_size, -self.shift_size), | |
slice(-self.shift_size, None), | |
) | |
w_slices = ( | |
slice(0, -self.window_size), | |
slice(-self.window_size, -self.shift_size), | |
slice(-self.shift_size, None), | |
) | |
cnt = 0 | |
for h in h_slices: | |
for w in w_slices: | |
img_mask[:, h, w, :] = cnt | |
cnt += 1 | |
mask_windows = window_partition( | |
img_mask, self.window_size | |
) # nW, window_size, window_size, 1 | |
mask_windows = mask_windows.view(-1, self.window_size * self.window_size) | |
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) | |
attn_mask = attn_mask.masked_fill( | |
attn_mask != 0, float(-100.0) | |
).masked_fill(attn_mask == 0, float(0.0)) | |
else: | |
attn_mask = None | |
self.register_buffer("attn_mask", attn_mask) | |
def forward(self, x): | |
# pdb.set_trace() | |
H, W = self.input_resolution | |
# print("H: ", H) | |
# print("W: ", W) | |
# pdb.set_trace() | |
B, L, C = x.shape | |
# assert L == H * W, "input feature has wrong size" | |
shortcut = x | |
x = self.norm1(x) | |
x = x.view(B, H, W, C) | |
# cyclic shift | |
if self.shift_size > 0: | |
shifted_x = torch.roll( | |
x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2) | |
) | |
else: | |
shifted_x = x | |
# partition windows | |
x_windows = window_partition( | |
shifted_x, self.window_size | |
) # nW*B, window_size, window_size, C | |
x_windows = x_windows.view( | |
-1, self.window_size * self.window_size, C | |
) # nW*B, window_size*window_size, C | |
# W-MSA/SW-MSA | |
attn_windows, attn = self.attn( | |
x_windows, mask=self.attn_mask | |
) # nW*B, window_size*window_size, C | |
# merge windows | |
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) | |
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C | |
# reverse cyclic shift | |
if self.shift_size > 0: | |
x = torch.roll( | |
shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2) | |
) | |
else: | |
x = shifted_x | |
x = x.view(B, H * W, C) | |
# FFN | |
x = shortcut + self.drop_path(x) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
return x, attn | |
def extra_repr(self): | |
return ( | |
f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " | |
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}" | |
) | |
class PatchMerging(nn.Module): | |
r"""Patch Merging Layer. | |
Args: | |
input_resolution (tuple[int]): Resolution of input feature. | |
dim (int): Number of input channels. | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
""" | |
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.input_resolution = input_resolution | |
self.dim = dim | |
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) | |
self.norm = norm_layer(4 * dim) | |
def forward(self, x): | |
""" | |
x: B, H*W, C | |
""" | |
H, W = self.input_resolution | |
B, L, C = x.shape | |
assert L == H * W, "input feature has wrong size" | |
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." | |
x = x.view(B, H, W, C) | |
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C | |
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C | |
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C | |
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C | |
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C | |
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C | |
x = self.norm(x) | |
x = self.reduction(x) | |
return x | |
def extra_repr(self): | |
return f"input_resolution={self.input_resolution}, dim={self.dim}" | |
class BasicLayer(nn.Module): | |
"""A basic Swin Transformer layer for one stage. | |
Args: | |
dim (int): Number of input channels. | |
input_resolution (tuple[int]): Input resolution. | |
depth (int): Number of blocks. | |
num_heads (int): Number of attention heads. | |
window_size (int): Local window size. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. | |
drop (float, optional): Dropout rate. Default: 0.0 | |
attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None | |
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. | |
""" | |
def __init__( | |
self, | |
dim, | |
input_resolution, | |
depth, | |
num_heads, | |
window_size, | |
mlp_ratio=4.0, | |
qkv_bias=True, | |
qk_scale=None, | |
drop=0.0, | |
attn_drop=0.0, | |
drop_path=0.0, | |
norm_layer=nn.LayerNorm, | |
downsample=None, | |
use_checkpoint=False, | |
norm_before_mlp="ln", | |
): | |
super().__init__() | |
self.dim = dim | |
self.input_resolution = input_resolution | |
self.depth = depth | |
self.use_checkpoint = use_checkpoint | |
# build blocks | |
self.blocks = nn.ModuleList( | |
[ | |
SwinTransformerBlock( | |
dim=dim, | |
input_resolution=input_resolution, | |
num_heads=num_heads, | |
window_size=window_size, | |
shift_size=0 if (i % 2 == 0) else window_size // 2, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop, | |
attn_drop=attn_drop, | |
drop_path=drop_path[i] | |
if isinstance(drop_path, list) | |
else drop_path, | |
norm_layer=norm_layer, | |
norm_before_mlp=norm_before_mlp, | |
) | |
for i in range(depth) | |
] | |
) | |
# patch merging layer | |
if downsample is not None: | |
self.downsample = downsample( | |
input_resolution, dim=dim, norm_layer=norm_layer | |
) | |
else: | |
self.downsample = None | |
def forward(self, x): | |
attns = [] | |
for blk in self.blocks: | |
if self.use_checkpoint: | |
x = checkpoint.checkpoint(blk, x) | |
else: | |
x, attn = blk(x) | |
if not self.training: | |
attns.append(attn.unsqueeze(0)) | |
if self.downsample is not None: | |
x = self.downsample(x) | |
if not self.training: | |
attn = torch.cat(attns, dim=0) | |
attn = torch.mean(attn, dim=0) | |
return x, attn | |
def extra_repr(self): | |
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" | |
# The Core of HTSAT | |
class HTSAT_Swin_Transformer(nn.Module): | |
r"""HTSAT based on the Swin Transformer | |
Args: | |
spec_size (int | tuple(int)): Input Spectrogram size. Default 256 | |
patch_size (int | tuple(int)): Patch size. Default: 4 | |
path_stride (iot | tuple(int)): Patch Stride for Frequency and Time Axis. Default: 4 | |
in_chans (int): Number of input image channels. Default: 1 (mono) | |
num_classes (int): Number of classes for classification head. Default: 527 | |
embed_dim (int): Patch embedding dimension. Default: 96 | |
depths (tuple(int)): Depth of each HTSAT-Swin Transformer layer. | |
num_heads (tuple(int)): Number of attention heads in different layers. | |
window_size (int): Window size. Default: 8 | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 | |
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True | |
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None | |
drop_rate (float): Dropout rate. Default: 0 | |
attn_drop_rate (float): Attention dropout rate. Default: 0 | |
drop_path_rate (float): Stochastic depth rate. Default: 0.1 | |
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. | |
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False | |
patch_norm (bool): If True, add normalization after patch embedding. Default: True | |
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False | |
config (module): The configuration Module from config.py | |
""" | |
def __init__( | |
self, | |
spec_size=256, | |
patch_size=4, | |
patch_stride=(4, 4), | |
in_chans=1, | |
num_classes=527, | |
embed_dim=96, | |
depths=[2, 2, 6, 2], | |
num_heads=[4, 8, 16, 32], | |
window_size=8, | |
mlp_ratio=4.0, | |
qkv_bias=True, | |
qk_scale=None, | |
drop_rate=0.0, | |
attn_drop_rate=0.0, | |
drop_path_rate=0.1, | |
norm_layer=nn.LayerNorm, | |
ape=False, | |
patch_norm=True, | |
use_checkpoint=False, | |
norm_before_mlp="ln", | |
config=None, | |
enable_fusion=False, | |
fusion_type="None", | |
**kwargs, | |
): | |
super(HTSAT_Swin_Transformer, self).__init__() | |
self.config = config | |
self.spec_size = spec_size | |
self.patch_stride = patch_stride | |
self.patch_size = patch_size | |
self.window_size = window_size | |
self.embed_dim = embed_dim | |
self.depths = depths | |
self.ape = ape | |
self.in_chans = in_chans | |
self.num_classes = num_classes | |
self.num_heads = num_heads | |
self.num_layers = len(self.depths) | |
self.num_features = int(self.embed_dim * 2 ** (self.num_layers - 1)) | |
self.drop_rate = drop_rate | |
self.attn_drop_rate = attn_drop_rate | |
self.drop_path_rate = drop_path_rate | |
self.qkv_bias = qkv_bias | |
self.qk_scale = None | |
self.patch_norm = patch_norm | |
self.norm_layer = norm_layer if self.patch_norm else None | |
self.norm_before_mlp = norm_before_mlp | |
self.mlp_ratio = mlp_ratio | |
self.use_checkpoint = use_checkpoint | |
self.enable_fusion = enable_fusion | |
self.fusion_type = fusion_type | |
# process mel-spec ; used only once | |
self.freq_ratio = self.spec_size // self.config.mel_bins | |
window = "hann" | |
center = True | |
pad_mode = "reflect" | |
ref = 1.0 | |
amin = 1e-10 | |
top_db = None | |
self.interpolate_ratio = 32 # Downsampled ratio | |
# Spectrogram extractor | |
self.spectrogram_extractor = Spectrogram( | |
n_fft=config.window_size, | |
hop_length=config.hop_size, | |
win_length=config.window_size, | |
window=window, | |
center=center, | |
pad_mode=pad_mode, | |
freeze_parameters=True, | |
) | |
# Logmel feature extractor | |
self.logmel_extractor = LogmelFilterBank( | |
sr=config.sample_rate, | |
n_fft=config.window_size, | |
n_mels=config.mel_bins, | |
fmin=config.fmin, | |
fmax=config.fmax, | |
ref=ref, | |
amin=amin, | |
top_db=top_db, | |
freeze_parameters=True, | |
) | |
# Spec augmenter | |
self.spec_augmenter = SpecAugmentation( | |
time_drop_width=64, | |
time_stripes_num=2, | |
freq_drop_width=8, | |
freq_stripes_num=2, | |
) # 2 2 | |
self.bn0 = nn.BatchNorm2d(self.config.mel_bins) | |
# split spctrogram into non-overlapping patches | |
self.patch_embed = PatchEmbed( | |
img_size=self.spec_size, | |
patch_size=self.patch_size, | |
in_chans=self.in_chans, | |
embed_dim=self.embed_dim, | |
norm_layer=self.norm_layer, | |
patch_stride=patch_stride, | |
enable_fusion=self.enable_fusion, | |
fusion_type=self.fusion_type, | |
) | |
num_patches = self.patch_embed.num_patches | |
patches_resolution = self.patch_embed.grid_size | |
self.patches_resolution = patches_resolution | |
# absolute position embedding | |
if self.ape: | |
self.absolute_pos_embed = nn.Parameter( | |
torch.zeros(1, num_patches, self.embed_dim) | |
) | |
trunc_normal_(self.absolute_pos_embed, std=0.02) | |
self.pos_drop = nn.Dropout(p=self.drop_rate) | |
# stochastic depth | |
dpr = [ | |
x.item() for x in torch.linspace(0, self.drop_path_rate, sum(self.depths)) | |
] # stochastic depth decay rule | |
# build layers | |
self.layers = nn.ModuleList() | |
for i_layer in range(self.num_layers): | |
layer = BasicLayer( | |
dim=int(self.embed_dim * 2**i_layer), | |
input_resolution=( | |
patches_resolution[0] // (2**i_layer), | |
patches_resolution[1] // (2**i_layer), | |
), | |
depth=self.depths[i_layer], | |
num_heads=self.num_heads[i_layer], | |
window_size=self.window_size, | |
mlp_ratio=self.mlp_ratio, | |
qkv_bias=self.qkv_bias, | |
qk_scale=self.qk_scale, | |
drop=self.drop_rate, | |
attn_drop=self.attn_drop_rate, | |
drop_path=dpr[ | |
sum(self.depths[:i_layer]) : sum(self.depths[: i_layer + 1]) | |
], | |
norm_layer=self.norm_layer, | |
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, | |
use_checkpoint=use_checkpoint, | |
norm_before_mlp=self.norm_before_mlp, | |
) | |
self.layers.append(layer) | |
self.norm = self.norm_layer(self.num_features) | |
self.avgpool = nn.AdaptiveAvgPool1d(1) | |
self.maxpool = nn.AdaptiveMaxPool1d(1) | |
SF = ( | |
self.spec_size | |
// (2 ** (len(self.depths) - 1)) | |
// self.patch_stride[0] | |
// self.freq_ratio | |
) | |
self.tscam_conv = nn.Conv2d( | |
in_channels=self.num_features, | |
out_channels=self.num_classes, | |
kernel_size=(SF, 3), | |
padding=(0, 1), | |
) | |
self.head = nn.Linear(num_classes, num_classes) | |
if (self.enable_fusion) and ( | |
self.fusion_type in ["daf_1d", "aff_1d", "iaff_1d"] | |
): | |
self.mel_conv1d = nn.Sequential( | |
nn.Conv1d(64, 64, kernel_size=5, stride=3, padding=2), | |
nn.BatchNorm1d(64), | |
) | |
if self.fusion_type == "daf_1d": | |
self.fusion_model = DAF() | |
elif self.fusion_type == "aff_1d": | |
self.fusion_model = AFF(channels=64, type="1D") | |
elif self.fusion_type == "iaff_1d": | |
self.fusion_model = iAFF(channels=64, type="1D") | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=0.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def no_weight_decay(self): | |
return {"absolute_pos_embed"} | |
def no_weight_decay_keywords(self): | |
return {"relative_position_bias_table"} | |
def forward_features(self, x, longer_idx=None): | |
# A deprecated optimization for using a hierarchical output from different blocks | |
frames_num = x.shape[2] | |
x = self.patch_embed(x, longer_idx=longer_idx) | |
if self.ape: | |
x = x + self.absolute_pos_embed | |
x = self.pos_drop(x) | |
for i, layer in enumerate(self.layers): | |
x, attn = layer(x) | |
# for x | |
x = self.norm(x) | |
B, N, C = x.shape | |
SF = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[0] | |
ST = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[1] | |
x = x.permute(0, 2, 1).contiguous().reshape(B, C, SF, ST) | |
B, C, F, T = x.shape | |
# group 2D CNN | |
c_freq_bin = F // self.freq_ratio | |
x = x.reshape(B, C, F // c_freq_bin, c_freq_bin, T) | |
x = x.permute(0, 1, 3, 2, 4).contiguous().reshape(B, C, c_freq_bin, -1) | |
# get latent_output | |
fine_grained_latent_output = torch.mean(x, dim=2) | |
fine_grained_latent_output = interpolate( | |
fine_grained_latent_output.permute(0, 2, 1).contiguous(), | |
8 * self.patch_stride[1], | |
) | |
latent_output = self.avgpool(torch.flatten(x, 2)) | |
latent_output = torch.flatten(latent_output, 1) | |
# display the attention map, if needed | |
x = self.tscam_conv(x) | |
x = torch.flatten(x, 2) # B, C, T | |
fpx = interpolate( | |
torch.sigmoid(x).permute(0, 2, 1).contiguous(), 8 * self.patch_stride[1] | |
) | |
x = self.avgpool(x) | |
x = torch.flatten(x, 1) | |
output_dict = { | |
"framewise_output": fpx, # already sigmoided | |
"clipwise_output": torch.sigmoid(x), | |
"fine_grained_embedding": fine_grained_latent_output, | |
"embedding": latent_output, | |
} | |
return output_dict | |
def crop_wav(self, x, crop_size, spe_pos=None): | |
time_steps = x.shape[2] | |
tx = torch.zeros(x.shape[0], x.shape[1], crop_size, x.shape[3]).to(x.device) | |
for i in range(len(x)): | |
if spe_pos is None: | |
crop_pos = random.randint(0, time_steps - crop_size - 1) | |
else: | |
crop_pos = spe_pos | |
tx[i][0] = x[i, 0, crop_pos : crop_pos + crop_size, :] | |
return tx | |
# Reshape the wavform to a img size, if you want to use the pretrained swin transformer model | |
def reshape_wav2img(self, x): | |
B, C, T, F = x.shape | |
target_T = int(self.spec_size * self.freq_ratio) | |
target_F = self.spec_size // self.freq_ratio | |
assert ( | |
T <= target_T and F <= target_F | |
), "the wav size should less than or equal to the swin input size" | |
# to avoid bicubic zero error | |
if T < target_T: | |
x = nn.functional.interpolate( | |
x, (target_T, x.shape[3]), mode="bicubic", align_corners=True | |
) | |
if F < target_F: | |
x = nn.functional.interpolate( | |
x, (x.shape[2], target_F), mode="bicubic", align_corners=True | |
) | |
x = x.permute(0, 1, 3, 2).contiguous() | |
x = x.reshape( | |
x.shape[0], | |
x.shape[1], | |
x.shape[2], | |
self.freq_ratio, | |
x.shape[3] // self.freq_ratio, | |
) | |
# print(x.shape) | |
x = x.permute(0, 1, 3, 2, 4).contiguous() | |
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3], x.shape[4]) | |
return x | |
# Repeat the wavform to a img size, if you want to use the pretrained swin transformer model | |
def repeat_wat2img(self, x, cur_pos): | |
B, C, T, F = x.shape | |
target_T = int(self.spec_size * self.freq_ratio) | |
target_F = self.spec_size // self.freq_ratio | |
assert ( | |
T <= target_T and F <= target_F | |
), "the wav size should less than or equal to the swin input size" | |
# to avoid bicubic zero error | |
if T < target_T: | |
x = nn.functional.interpolate( | |
x, (target_T, x.shape[3]), mode="bicubic", align_corners=True | |
) | |
if F < target_F: | |
x = nn.functional.interpolate( | |
x, (x.shape[2], target_F), mode="bicubic", align_corners=True | |
) | |
x = x.permute(0, 1, 3, 2).contiguous() # B C F T | |
x = x[:, :, :, cur_pos : cur_pos + self.spec_size] | |
x = x.repeat(repeats=(1, 1, 4, 1)) | |
return x | |
def forward( | |
self, x: torch.Tensor, mixup_lambda=None, infer_mode=False, device=None | |
): # out_feat_keys: List[str] = None): | |
if self.enable_fusion and x["longer"].sum() == 0: | |
# if no audio is longer than 10s, then randomly select one audio to be longer | |
x["longer"][torch.randint(0, x["longer"].shape[0], (1,))] = True | |
if not self.enable_fusion: | |
x = x["waveform"].to(device=device, non_blocking=True) | |
x = self.spectrogram_extractor(x) # (batch_size, 1, time_steps, freq_bins) | |
x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins) | |
x = x.transpose(1, 3) | |
x = self.bn0(x) | |
x = x.transpose(1, 3) | |
if self.training: | |
x = self.spec_augmenter(x) | |
if self.training and mixup_lambda is not None: | |
x = do_mixup(x, mixup_lambda) | |
x = self.reshape_wav2img(x) | |
output_dict = self.forward_features(x) | |
else: | |
longer_list = x["longer"].to(device=device, non_blocking=True) | |
x = x["mel_fusion"].to(device=device, non_blocking=True) | |
x = x.transpose(1, 3) | |
x = self.bn0(x) | |
x = x.transpose(1, 3) | |
longer_list_idx = torch.where(longer_list)[0] | |
if self.fusion_type in ["daf_1d", "aff_1d", "iaff_1d"]: | |
new_x = x[:, 0:1, :, :].clone().contiguous() | |
if len(longer_list_idx) > 0: | |
# local processing | |
fusion_x_local = x[longer_list_idx, 1:, :, :].clone().contiguous() | |
FB, FC, FT, FF = fusion_x_local.size() | |
fusion_x_local = fusion_x_local.view(FB * FC, FT, FF) | |
fusion_x_local = torch.permute( | |
fusion_x_local, (0, 2, 1) | |
).contiguous() | |
fusion_x_local = self.mel_conv1d(fusion_x_local) | |
fusion_x_local = fusion_x_local.view( | |
FB, FC, FF, fusion_x_local.size(-1) | |
) | |
fusion_x_local = ( | |
torch.permute(fusion_x_local, (0, 2, 1, 3)) | |
.contiguous() | |
.flatten(2) | |
) | |
if fusion_x_local.size(-1) < FT: | |
fusion_x_local = torch.cat( | |
[ | |
fusion_x_local, | |
torch.zeros( | |
(FB, FF, FT - fusion_x_local.size(-1)), | |
device=device, | |
), | |
], | |
dim=-1, | |
) | |
else: | |
fusion_x_local = fusion_x_local[:, :, :FT] | |
# 1D fusion | |
new_x = new_x.squeeze(1).permute((0, 2, 1)).contiguous() | |
new_x[longer_list_idx] = self.fusion_model( | |
new_x[longer_list_idx], fusion_x_local | |
) | |
x = new_x.permute((0, 2, 1)).contiguous()[:, None, :, :] | |
else: | |
x = new_x | |
elif self.fusion_type in ["daf_2d", "aff_2d", "iaff_2d", "channel_map"]: | |
x = x # no change | |
if self.training: | |
x = self.spec_augmenter(x) | |
if self.training and mixup_lambda is not None: | |
x = do_mixup(x, mixup_lambda) | |
x = self.reshape_wav2img(x) | |
output_dict = self.forward_features(x, longer_idx=longer_list_idx) | |
# if infer_mode: | |
# # in infer mode. we need to handle different length audio input | |
# frame_num = x.shape[2] | |
# target_T = int(self.spec_size * self.freq_ratio) | |
# repeat_ratio = math.floor(target_T / frame_num) | |
# x = x.repeat(repeats=(1,1,repeat_ratio,1)) | |
# x = self.reshape_wav2img(x) | |
# output_dict = self.forward_features(x) | |
# else: | |
# if x.shape[2] > self.freq_ratio * self.spec_size: | |
# if self.training: | |
# x = self.crop_wav(x, crop_size=self.freq_ratio * self.spec_size) | |
# x = self.reshape_wav2img(x) | |
# output_dict = self.forward_features(x) | |
# else: | |
# # Change: Hard code here | |
# overlap_size = (x.shape[2] - 1) // 4 | |
# output_dicts = [] | |
# crop_size = (x.shape[2] - 1) // 2 | |
# for cur_pos in range(0, x.shape[2] - crop_size - 1, overlap_size): | |
# tx = self.crop_wav(x, crop_size = crop_size, spe_pos = cur_pos) | |
# tx = self.reshape_wav2img(tx) | |
# output_dicts.append(self.forward_features(tx)) | |
# clipwise_output = torch.zeros_like(output_dicts[0]["clipwise_output"]).float().to(x.device) | |
# framewise_output = torch.zeros_like(output_dicts[0]["framewise_output"]).float().to(x.device) | |
# for d in output_dicts: | |
# clipwise_output += d["clipwise_output"] | |
# framewise_output += d["framewise_output"] | |
# clipwise_output = clipwise_output / len(output_dicts) | |
# framewise_output = framewise_output / len(output_dicts) | |
# output_dict = { | |
# 'framewise_output': framewise_output, | |
# 'clipwise_output': clipwise_output | |
# } | |
# else: # this part is typically used, and most easy one | |
# x = self.reshape_wav2img(x) | |
# output_dict = self.forward_features(x) | |
# x = self.head(x) | |
# We process the data in the dataloader part, in that here we only consider the input_T < fixed_T | |
return output_dict | |
def create_htsat_model(audio_cfg, enable_fusion=False, fusion_type="None"): | |
try: | |
assert audio_cfg.model_name in [ | |
"tiny", | |
"base", | |
"large", | |
], "model name for HTS-AT is wrong!" | |
if audio_cfg.model_name == "tiny": | |
model = HTSAT_Swin_Transformer( | |
spec_size=256, | |
patch_size=4, | |
patch_stride=(4, 4), | |
num_classes=audio_cfg.class_num, | |
embed_dim=96, | |
depths=[2, 2, 6, 2], | |
num_heads=[4, 8, 16, 32], | |
window_size=8, | |
config=audio_cfg, | |
enable_fusion=enable_fusion, | |
fusion_type=fusion_type, | |
) | |
elif audio_cfg.model_name == "base": | |
model = HTSAT_Swin_Transformer( | |
spec_size=256, | |
patch_size=4, | |
patch_stride=(4, 4), | |
num_classes=audio_cfg.class_num, | |
embed_dim=128, | |
depths=[2, 2, 12, 2], | |
num_heads=[4, 8, 16, 32], | |
window_size=8, | |
config=audio_cfg, | |
enable_fusion=enable_fusion, | |
fusion_type=fusion_type, | |
) | |
elif audio_cfg.model_name == "large": | |
model = HTSAT_Swin_Transformer( | |
spec_size=256, | |
patch_size=4, | |
patch_stride=(4, 4), | |
num_classes=audio_cfg.class_num, | |
embed_dim=256, | |
depths=[2, 2, 12, 2], | |
num_heads=[4, 8, 16, 32], | |
window_size=8, | |
config=audio_cfg, | |
enable_fusion=enable_fusion, | |
fusion_type=fusion_type, | |
) | |
return model | |
except: | |
raise RuntimeError( | |
f"Import Model for {audio_cfg.model_name} not found, or the audio cfg parameters are not enough." | |
) | |