File size: 4,216 Bytes
4cea813
 
 
 
26d3bd8
4cea813
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efa8dd7
 
 
4cea813
efa8dd7
 
 
4cea813
efa8dd7
4cea813
efa8dd7
4cea813
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efa8dd7
04d88b1
4cea813
 
 
 
 
 
 
26d3bd8
4cea813
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import torch
import torch.nn as nn
import wandb
import streamlit as st
import os

import clip
from transformers import GPT2Tokenizer, GPT2LMHeadModel


class ImageEncoder(nn.Module):

    def __init__(self, base_network):
        super(ImageEncoder, self).__init__()
        self.base_network = base_network
        self.embedding_size  = self.base_network.token_embedding.weight.shape[1]

    def forward(self, images):
        with torch.no_grad():
            x = self.base_network.encode_image(images)
            x = x / x.norm(dim=1, keepdim=True)
            x = x.float()

        return x

class Mapping(nn.Module):
    # Map the featureMap from CLIP model to GPT2
    def __init__(self, clip_embedding_size, gpt_embedding_size, length=30): # length: sentence length
        super(Mapping, self).__init__()

        self.clip_embedding_size = clip_embedding_size
        self.gpt_embedding_size = gpt_embedding_size
        self.length = length

        self.fc1 = nn.Linear(clip_embedding_size, gpt_embedding_size * length)
    
    def forward(self, x):
        x = self.fc1(x)

        return x.view(-1, self.length, self.gpt_embedding_size)
    

class TextDecoder(nn.Module):
    def __init__(self, base_network):
        super(TextDecoder, self).__init__()
        self.base_network = base_network
        self.embedding_size = self.base_network.transformer.wte.weight.shape[1]
        self.vocab_size = self.base_network.transformer.wte.weight.shape[0]
    
    def forward(self, concat_embedding, mask=None):
        return self.base_network(inputs_embeds=concat_embedding, attention_mask=mask)
    

    def get_embedding(self, texts):
        return self.base_network.transformer.wte(texts)


import pytorch_lightning as pl


class ImageCaptioner(pl.LightningModule):
    def __init__(self, clip_model, gpt_model, tokenizer, total_steps, max_length=20):
        super(ImageCaptioner, self).__init__()

        self.padding_token_id = tokenizer.pad_token_id
        #self.stop_token_id = tokenizer.encode('.')[0]

        # Define networks
        self.clip = ImageEncoder(clip_model)
        self.gpt = TextDecoder(gpt_model)
        self.mapping_network = Mapping(self.clip.embedding_size, self.gpt.embedding_size, max_length)

        # Define variables
        self.total_steps = total_steps
        self.max_length = max_length
        self.clip_embedding_size = self.clip.embedding_size
        self.gpt_embedding_size = self.gpt.embedding_size
        self.gpt_vocab_size = self.gpt.vocab_size

    
    def forward(self, images, texts, masks):
        texts_embedding = self.gpt.get_embedding(texts)
        images_embedding = self.clip(images)

        images_projection = self.mapping_network(images_embedding).view(-1, self.max_length, self.gpt_embedding_size)
        embedding_concat = torch.cat((images_projection, texts_embedding), dim=1)

        out = self.gpt(embedding_concat, masks)

        return out

# @st.cache_resource
# def download_trained_model():
#     wandb.init(anonymous="must")

#     api = wandb.Api()
#     artifact = api.artifact('hungchiehwu/CLIP-L14_GPT/model-ql03493w:v3')
#     artifact_dir = artifact.download()

#     wandb.finish()

#     return artifact_dir

@st.cache_resource
def load_clip_model():

    clip_model, image_transform = clip.load("ViT-L/14", device="cpu")

    return clip_model, image_transform

@st.cache_resource
def load_gpt_model():
    tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
    gpt_model = GPT2LMHeadModel.from_pretrained('gpt2')

    tokenizer.pad_token = tokenizer.eos_token

    return gpt_model, tokenizer

@st.cache_resource
def load_model():

    # # Load fine-tuned model from wandb
    artifact_dir = "./artifacts/model-ql03493w:v3"
    PATH = f"{os.getcwd()}/{artifact_dir[2:]}/model.ckpt"

    # Load pretrained GPT, CLIP model from OpenAI
    clip_model, image_transfrom = load_clip_model()
    gpt_model, tokenizer = load_gpt_model()
   
    
    # Load weights
    print(PATH)
    model = ImageCaptioner(clip_model, gpt_model, tokenizer, 0)
    checkpoint = torch.load(PATH, map_location=torch.device('cpu'))
    model.load_state_dict(checkpoint["state_dict"])

    return model, image_transfrom, tokenizer