File size: 5,162 Bytes
dc12c31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import time
from abc import abstractmethod
from typing import List, Tuple

import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import CLIPImageProcessor, CLIPVisionModel

from extensions.multimodal.abstract_pipeline import AbstractMultimodalPipeline
from modules import shared
from modules.logging_colors import logger
from modules.text_generation import encode


class LLaVA_v0_Pipeline(AbstractMultimodalPipeline):
    CLIP_REPO = "openai/clip-vit-large-patch14"

    def __init__(self, params: dict) -> None:
        super().__init__()
        self.clip_device = self._get_device("vision_device", params)
        self.clip_dtype = self._get_dtype("vision_bits", params)
        self.projector_device = self._get_device("projector_device", params)
        self.projector_dtype = self._get_dtype("projector_bits", params)
        self.image_processor, self.vision_tower, self.mm_projector = self._load_models()

    def _load_models(self):
        start_ts = time.time()

        logger.info(f"LLaVA - Loading CLIP from {LLaVA_v0_Pipeline.CLIP_REPO} as {self.clip_dtype} on {self.clip_device}...")
        image_processor = CLIPImageProcessor.from_pretrained(LLaVA_v0_Pipeline.CLIP_REPO, torch_dtype=self.clip_dtype)
        vision_tower = CLIPVisionModel.from_pretrained(LLaVA_v0_Pipeline.CLIP_REPO, torch_dtype=self.clip_dtype).to(self.clip_device)

        logger.info(f"LLaVA - Loading projector from {self.llava_projector_repo()} as {self.projector_dtype} on {self.projector_device}...")
        projector_path = hf_hub_download(self.llava_projector_repo(), self.llava_projector_filename())
        mm_projector = torch.nn.Linear(*self.llava_projector_shape())
        projector_data = torch.load(projector_path)
        mm_projector.weight = torch.nn.Parameter(projector_data['model.mm_projector.weight'].to(dtype=self.projector_dtype), False)
        mm_projector.bias = torch.nn.Parameter(projector_data['model.mm_projector.bias'].to(dtype=self.projector_dtype), False)
        mm_projector = mm_projector.to(self.projector_device)

        logger.info(f"LLaVA supporting models loaded, took {time.time() - start_ts:.2f} seconds")
        return image_processor, vision_tower, mm_projector

    @staticmethod
    def image_start() -> str:
        return "<im_start>"

    @staticmethod
    def image_end() -> str:
        return "<im_end>"

    @staticmethod
    def num_image_embeds() -> int:
        return 256

    @staticmethod
    def embed_tokens(input_ids: torch.Tensor) -> torch.Tensor:
        if hasattr(shared.model.model, 'embed_tokens'):
            func = shared.model.model.embed_tokens
        else:
            func = shared.model.model.model.embed_tokens  # AutoGPTQ case

        return func(input_ids).to(shared.model.device, dtype=shared.model.dtype)

    @staticmethod
    def placeholder_embeddings() -> torch.Tensor:
        return LLaVA_v0_Pipeline.embed_tokens(encode("<im_patch>"*256, add_bos_token=False)[0])

    def embed_images(self, images: List[Image.Image]) -> torch.Tensor:
        images = self.image_processor(images, return_tensors='pt')['pixel_values']
        images = images.to(self.clip_device, dtype=self.clip_dtype)

        with torch.no_grad():
            image_forward_outs = self.vision_tower(images, output_hidden_states=True)
            select_hidden_state_layer = -2
            select_hidden_state = image_forward_outs.hidden_states[select_hidden_state_layer]
            image_features = select_hidden_state[:, 1:].to(self.projector_device, dtype=self.projector_dtype)
            image_features = self.mm_projector(image_features)
        return image_features.to(shared.model.device, dtype=shared.model.dtype)

    @staticmethod
    @abstractmethod
    def llava_projector_repo() -> str:
        pass

    @staticmethod
    @abstractmethod
    def llava_projector_filename() -> str:
        pass

    @staticmethod
    @abstractmethod
    def llava_projector_shape() -> Tuple[int, int]:
        pass


class LLaVA_v0_13B_Pipeline(LLaVA_v0_Pipeline):
    def __init__(self, params: dict) -> None:
        super().__init__(params)

    @staticmethod
    def name() -> str:
        return "llava-13b"

    @staticmethod
    def placeholder_token_id() -> int:
        return 32000

    @staticmethod
    def llava_projector_shape() -> Tuple[int, int]:
        return (1024, 5120)

    @staticmethod
    def llava_projector_filename() -> str:
        return "mm_projector.bin"

    @staticmethod
    def llava_projector_repo() -> str:
        return "liuhaotian/LLaVA-13b-delta-v0"


class LLaVA_v0_7B_Pipeline(LLaVA_v0_Pipeline):
    def __init__(self, params: dict) -> None:
        super().__init__(params)

    @staticmethod
    def name() -> str:
        return "llava-7b"

    @staticmethod
    def placeholder_token_id() -> int:
        return 32001

    @staticmethod
    def llava_projector_shape() -> Tuple[int, int]:
        return (1024, 4096)

    @staticmethod
    def llava_projector_filename() -> str:
        return "mm_projector.bin"

    @staticmethod
    def llava_projector_repo() -> str:
        return "liuhaotian/LLaVA-7b-delta-v0"