Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,496 Bytes
3f2900f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import gradio as gr
from transformers import pipeline, set_seed
import torch
# Function to generate responses using the entire conversation history
def generate_response(messages, model_name, sampling_temperature, max_tokens, top_p):
generator = pipeline('text-generation', model=model_name, torch_dtype=torch.float16)
set_seed(42) # You can set a different seed for reproducibility
# Combine entire conversation history
conversation = ""
for message in messages:
role = message['role']
content = message['content']
conversation += f"<|im_start|>{role}\n{content}<|im_end|>\n"
# Generate response
response = generator(conversation, max_length=2048, temperature=sampling_temperature, max_tokens=max_tokens, top_p=top_p, repetition_penalty=1.1, top_k=12)
return [{'content': response[0]['generated_text'], 'role': 'assistant'}]
# Gradio chatbot interface with conversation history
iface = gr.Interface(
fn=generate_response,
inputs=[
gr.Chat("You", "Chatbot"),
gr.Dropdown("Select Model", ["Locutusque/TinyMistral-248M-v2.5-Instruct", "Locutusque/Hercules-1.0-Mistral-7B", "Locutusque/UltraQwen-1_8B"]),
gr.Slider("Sampling Temperature", 0.1, 2.0, 1.0, 0.1),
gr.Slider("Max Tokens", 5, 200, 50, 5),
gr.Slider("Top P", 0.1, 0.5, 0.75, 0.1)
],
outputs=gr.Chat(role="Chatbot"),
live=True,
capture_session=True
)
# Launch Gradio chatbot interface
iface.launch()
|