Loewolf-Chat / app.py
Loewolf's picture
Update app.py
06ea162
raw
history blame
2.46 kB
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer
# Konfigurationsparameter
MAX_MAX_NEW_TOKENS = 100
DEFAULT_MAX_NEW_TOKENS = 20
MAX_INPUT_TOKEN_LENGTH = 400 # Begrenzung auf 400 Tokens
# Modell und Tokenizer laden
model_id = "Loewolf/GPT_1"
model = AutoModelForCausalLM.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Gradio Chat Interface Funktion
def generate(
message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> str:
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer(conversation, return_tensors="pt", truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH)
generate_kwargs = dict(
input_ids=input_ids["input_ids"],
max_length=input_ids["input_ids"].shape[1] + max_new_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
pad_token_id=tokenizer.eos_token_id
)
outputs = model.generate(**generate_kwargs)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Gradio Interface
chat_interface = gr.Interface(
fn=generate,
inputs=[
gr.Textbox(label="Message"),
gr.JSON(label="Chat History"),
gr.Textbox(label="System Prompt", lines=2),
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, step=0.1, value=0.6),
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
],
outputs="text",
live=True
)
# Starten des Gradio-Servers
if __name__ == "__main__":
chat_interface.launch()