Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,44 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
|
|
|
|
|
|
3 |
|
4 |
# Laden des GPT-Modells mit Hugging Face Pipeline
|
5 |
model = pipeline("text-generation", model="Loewolf/GPT_1")
|
|
|
6 |
|
7 |
-
# Definition einer Wrapper-Funktion für das Modell
|
8 |
def generate_text(input_text):
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Erstellen der Gradio-Schnittstelle
|
12 |
interface = gr.Interface(fn=generate_text, inputs="text", outputs="text")
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import pipeline, set_seed
|
4 |
+
|
5 |
+
# Setzen eines Seeds für Reproduzierbarkeit
|
6 |
+
set_seed(42)
|
7 |
|
8 |
# Laden des GPT-Modells mit Hugging Face Pipeline
|
9 |
model = pipeline("text-generation", model="Loewolf/GPT_1")
|
10 |
+
tokenizer = model.tokenizer
|
11 |
|
|
|
12 |
def generate_text(input_text):
|
13 |
+
# Konvertieren des Eingabetextes in Token-IDs
|
14 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
15 |
+
|
16 |
+
# Erstellung der Attention-Mask
|
17 |
+
attention_mask = torch.ones(input_ids.shape, dtype=torch.bool)
|
18 |
+
|
19 |
+
# Einstellung der maximalen Länge
|
20 |
+
max_length = model.model.config.n_positions if len(input_ids[0]) > model.model.config.n_positions else len(input_ids[0]) + 20
|
21 |
+
|
22 |
+
# Textgenerierung mit spezifischen Parametern
|
23 |
+
beam_output = model.model.generate(
|
24 |
+
input_ids,
|
25 |
+
attention_mask=attention_mask,
|
26 |
+
max_length=max_length,
|
27 |
+
min_length=4,
|
28 |
+
num_beams=5,
|
29 |
+
no_repeat_ngram_size=2,
|
30 |
+
early_stopping=True,
|
31 |
+
temperature=0.9,
|
32 |
+
top_p=0.90,
|
33 |
+
top_k=50,
|
34 |
+
length_penalty=2.0,
|
35 |
+
do_sample=True,
|
36 |
+
eos_token_id=tokenizer.eos_token_id,
|
37 |
+
pad_token_id=tokenizer.eos_token_id
|
38 |
+
)
|
39 |
+
|
40 |
+
# Konvertieren der generierten Token-IDs zurück in Text
|
41 |
+
return tokenizer.decode(beam_output[0], skip_special_tokens=True)
|
42 |
|
43 |
# Erstellen der Gradio-Schnittstelle
|
44 |
interface = gr.Interface(fn=generate_text, inputs="text", outputs="text")
|