import gradio as gr from gradio import Textbox, Slider from transformers import GPT2LMHeadModel, GPT2Tokenizer # Initialisierung des Modells und des Tokenizers tokenizer = GPT2Tokenizer.from_pretrained("Loewolf/GPT_1") model = GPT2LMHeadModel.from_pretrained("Loewolf/GPT_1") def generate_text(prompt, max_length, temperature, top_k, top_p): inputs = tokenizer.encode(prompt, return_tensors="pt") outputs = model.generate(inputs, max_length=max_length, temperature=temperature, top_k=top_k, top_p=top_p, num_return_sequences=1) text = tokenizer.decode(outputs[0], skip_special_tokens=True) return text iface = gr.Interface( fn=generate_text, inputs=[ Textbox(lines=2, placeholder="Geben Sie einen Prompt ein..."), Slider(minimum=10, maximum=100, default=50, label="Maximale Länge"), Slider(minimum=0.1, maximum=1.0, step=0.1, default=0.7, label="Temperatur"), Slider(minimum=0, maximum=50, default=20, label="Top K"), Slider(minimum=0.0, maximum=1.0, step=0.1, default=0.9, label="Top P") ], outputs="text" ) iface.launch()