File size: 6,298 Bytes
c79073a
 
e86736e
89a88ac
cfbe98d
e86736e
fa1b7c0
89a88ac
 
7c30d0a
c79073a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f8dd98
6d06448
cfbe98d
 
 
 
3f8dd98
89a88ac
c79073a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89a88ac
c79073a
 
 
 
 
 
 
 
 
 
 
 
a83006f
c79073a
a83006f
c79073a
a83006f
c79073a
 
 
 
a83006f
c79073a
a83006f
c79073a
 
89a88ac
c79073a
 
 
 
 
89a88ac
c79073a
 
 
89a88ac
c79073a
 
fa1b7c0
c79073a
89a88ac
c79073a
 
89a88ac
c79073a
 
89a88ac
c79073a
fa1b7c0
3f8dd98
 
cfbe98d
 
c79073a
 
 
 
 
 
 
89a88ac
 
 
 
 
 
 
 
 
 
 
 
c79073a
89a88ac
 
 
 
a83006f
 
4e8c8b5
c79073a
a83006f
964fd26
e86736e
c79073a
4e8c8b5
a0e49d5
e86736e
a0e49d5
 
2c039db
 
7c30d0a
c79073a
fa1b7c0
2c039db
 
fa1b7c0
cfbe98d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import re
import PIL.Image
import pandas as pd
import numpy as np
import gradio as gr
from datasets import load_dataset
import infer
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
from sklearn.preprocessing import LabelEncoder
import torch
from torch import nn
from transformers import BertConfig, BertForMaskedLM, PreTrainedTokenizerFast
from huggingface_hub import PyTorchModelHubMixin

from config import DEFAULT_INPUTS, MODELS, DATASETS

# We need this for the eco layers because they are too big
PIL.Image.MAX_IMAGE_PIXELS = None

torch.set_grad_enabled(False)


# Load models
class DNASeqClassifier(nn.Module, PyTorchModelHubMixin):
    def __init__(self, bert_model, env_dim, num_classes):
        super(DNASeqClassifier, self).__init__()
        self.bert = bert_model
        self.env_dim = env_dim
        self.num_classes = num_classes
        self.fc = nn.Linear(768 + env_dim, num_classes)

    def forward(self, bert_inputs, env_data):
        outputs = self.bert(**bert_inputs)
        dna_embeddings = outputs.hidden_states[-1].mean(1)
        combined = torch.cat((dna_embeddings, env_data), dim=1)
        logits = self.fc(combined)

        return logits

tokenizer = PreTrainedTokenizerFast.from_pretrained(MODELS["embeddings"])
embeddings_model = BertForMaskedLM.from_pretrained(MODELS["embeddings"])
classification_model = DNASeqClassifier.from_pretrained(
    MODELS["classification"],
    bert_model=BertForMaskedLM(
        BertConfig(vocab_size=259, output_hidden_states=True),
    ),
)

embeddings_model.eval()
classification_model.eval()

# Load datasets
ecolayers_ds = load_dataset(DATASETS["ecolayers"])


def set_default_inputs():
    return (DEFAULT_INPUTS["dna_sequence"],
            DEFAULT_INPUTS["latitude"],
            DEFAULT_INPUTS["longitude"])


def preprocess(dna_sequence: str, latitude: str, longitude: str): 
    """
    Prepares app input for downsteram tasks
    """

    # Preprocess the DNA sequence turning it into an embedding
    dna_seq_preprocessed: str = re.sub(r"[^ACGT]", "N", dna_sequence)
    dna_seq_preprocessed: str = re.sub(r"N+$", "", dna_sequence)
    dna_seq_preprocessed = dna_seq_preprocessed[:660]
    dna_seq_preprocessed = " ".join([
        dna_seq_preprocessed[i:i+4] for i in range(0, len(dna_seq_preprocessed), 4)
    ])

    dna_embedding: torch.Tensor = embeddings_model(
        **tokenizer(dna_seq_preprocessed, return_tensors="pt")
    ).hidden_states[-1].mean(1).squeeze()

    # Preprocess the location data
    coords = (float(latitude), float(longitude))

    return dna_embedding, coords
    # ecolayer_data = ecolayers_ds  # TODO something something...

    # # format lat and lon into coords
    # coords = (inp_lat, inp_lng)
    # # Grab rasters from the tifs
    # ecoLayers = load_dataset("LofiAmazon/Global-Ecolayers")
    # temp = pd.DataFrame([coords, embed], columns = ['coord', 'embeddings'])
    # data = pd.merge(temp, ecoLayers, on='coord', how='left')

    # return data

# def predict_genus():
#     data = preprocess()
#     out = infer.infer_dna(data)
    
#     results = []

#     genuses = infer.infer()
        
#     results.append({
#         "sequence": dna_df['nucraw'],
#         # "predictions": pd.concat([dna_genuses, envdna_genuses], axis=0)
#         'predictions': genuses})
    
#     return results

# def tsne_DNA(data, genuses):
#     data["embeddings"] = data["embeddings"].apply(lambda x: np.array(list(map(float, x[1:-1].split()))))

#     # Pick genuses with most samples
#     top_k = 5
#     genus_counts = df["genus"].value_counts()
#     top_genuses = genus_counts.head(top_k).index
#     df = df[df["genus"].isin(top_genuses)]

#     # Create a t-SNE plot of the embeddings
#     n_genus = len(df["genus"].unique())
#     tsne = TSNE(n_components=2, perplexity=30, learning_rate=200, n_iter=1000, random_state=0)

#     X = np.stack(df["embeddings"].tolist())
#     y = df["genus"].tolist()

#     X_tsne = tsne.fit_transform(X)

#     label_encoder = LabelEncoder()
#     y_encoded = label_encoder.fit_transform(y)

#     plot = plt.figure(figsize=(6, 5))
#     scatter = plt.scatter(X_tsne[:, 0], X_tsne[:, 1], c=y_encoded, cmap="viridis", alpha=0.7)

#     return plot


with gr.Blocks() as demo:
    # Header section
    gr.Markdown("# DNA Identifier Tool")
    gr.Markdown((
        "Welcome to Lofi Amazon Beats' DNA Identifier Tool. "
        "Please enter a DNA sequence and the coordinates at which its sample "
        "was taken to get started. Click 'I'm feeling lucky' to see use a "
        "random sequence."
    ))

    with gr.Row():
        with gr.Column():
            inp_dna = gr.Textbox(label="DNA", placeholder="e.g. AACAATGTA... (min 200 and max 660 characters)")

        with gr.Column():
            with gr.Row():
                inp_lat = gr.Textbox(label="Latitude", placeholder="e.g. -3.009083")    
            with gr.Row():
                inp_lng = gr.Textbox(label="Longitude", placeholder="e.g. -58.68281")

    with gr.Row():
        btn_run = gr.Button("Predict")
        btn_run.click(fn=preprocess, inputs=[inp_dna, inp_lat, inp_lng])

        btn_defaults = gr.Button("I'm feeling lucky")
        btn_defaults.click(fn=set_default_inputs, outputs=[inp_dna, inp_lat, inp_lng])


    with gr.Tab("Genus Prediction"):
        with gr.Row():
            gr.Markdown("Make plot or table for Top 5 species")

        with gr.Row():
            genus_out = gr.Dataframe(headers=["DNA Only Pred Genus", "DNA Only Prob", "DNA & Env Pred Genus", "DNA & Env Prob"])
            # btn_run.click(fn=predict_genus, inputs=[inp_dna, inp_lat, inp_lng], outputs=genus_out)
    
    with gr.Tab('DNA Embedding Space Visualizer'):
        gr.Markdown("If the highest genus probability is very low for your DNA sequence, we can still examine the DNA embedding of the sequence in relation to known samples for clues.")

        with gr.Row() as row:
            with gr.Column():
                gr.Markdown("Plot of your DNA sequence among other known species clusters.")
                # plot = gr.Plot("")
                # btn_run.click(fn=tsne_DNA, inputs=[inp_dna, genus_out])

            with gr.Column():
                gr.Markdown("Plot of the five most common species at your sample coordinate.")

demo.launch()