import re import PIL.Image import pandas as pd import numpy as np import gradio as gr from datasets import load_dataset import infer import matplotlib.pyplot as plt from sklearn.manifold import TSNE from sklearn.preprocessing import LabelEncoder import torch from torch import nn from transformers import BertConfig, BertForMaskedLM, PreTrainedTokenizerFast from huggingface_hub import PyTorchModelHubMixin from config import DEFAULT_INPUTS, MODELS, DATASETS # We need this for the eco layers because they are too big PIL.Image.MAX_IMAGE_PIXELS = None torch.set_grad_enabled(False) # Load models class DNASeqClassifier(nn.Module, PyTorchModelHubMixin): def __init__(self, bert_model, env_dim, num_classes): super(DNASeqClassifier, self).__init__() self.bert = bert_model self.env_dim = env_dim self.num_classes = num_classes self.fc = nn.Linear(768 + env_dim, num_classes) def forward(self, bert_inputs, env_data): outputs = self.bert(**bert_inputs) dna_embeddings = outputs.hidden_states[-1].mean(1) combined = torch.cat((dna_embeddings, env_data), dim=1) logits = self.fc(combined) return logits tokenizer = PreTrainedTokenizerFast.from_pretrained(MODELS["embeddings"]) embeddings_model = BertForMaskedLM.from_pretrained(MODELS["embeddings"]) classification_model = DNASeqClassifier.from_pretrained( MODELS["classification"], bert_model=BertForMaskedLM( BertConfig(vocab_size=259, output_hidden_states=True), ), ) embeddings_model.eval() classification_model.eval() # Load datasets ecolayers_ds = load_dataset(DATASETS["ecolayers"]) def set_default_inputs(): return (DEFAULT_INPUTS["dna_sequence"], DEFAULT_INPUTS["latitude"], DEFAULT_INPUTS["longitude"]) def preprocess(dna_sequence: str, latitude: str, longitude: str): """ Prepares app input for downsteram tasks """ # Preprocess the DNA sequence turning it into an embedding dna_seq_preprocessed: str = re.sub(r"[^ACGT]", "N", dna_sequence) dna_seq_preprocessed: str = re.sub(r"N+$", "", dna_sequence) dna_seq_preprocessed = dna_seq_preprocessed[:660] dna_seq_preprocessed = " ".join([ dna_seq_preprocessed[i:i+4] for i in range(0, len(dna_seq_preprocessed), 4) ]) dna_embedding: torch.Tensor = embeddings_model( **tokenizer(dna_seq_preprocessed, return_tensors="pt") ).hidden_states[-1].mean(1).squeeze() # Preprocess the location data coords = (float(latitude), float(longitude)) return dna_embedding, coords # ecolayer_data = ecolayers_ds # TODO something something... # # format lat and lon into coords # coords = (inp_lat, inp_lng) # # Grab rasters from the tifs # ecoLayers = load_dataset("LofiAmazon/Global-Ecolayers") # temp = pd.DataFrame([coords, embed], columns = ['coord', 'embeddings']) # data = pd.merge(temp, ecoLayers, on='coord', how='left') # return data # def predict_genus(): # data = preprocess() # out = infer.infer_dna(data) # results = [] # genuses = infer.infer() # results.append({ # "sequence": dna_df['nucraw'], # # "predictions": pd.concat([dna_genuses, envdna_genuses], axis=0) # 'predictions': genuses}) # return results # def tsne_DNA(data, genuses): # data["embeddings"] = data["embeddings"].apply(lambda x: np.array(list(map(float, x[1:-1].split())))) # # Pick genuses with most samples # top_k = 5 # genus_counts = df["genus"].value_counts() # top_genuses = genus_counts.head(top_k).index # df = df[df["genus"].isin(top_genuses)] # # Create a t-SNE plot of the embeddings # n_genus = len(df["genus"].unique()) # tsne = TSNE(n_components=2, perplexity=30, learning_rate=200, n_iter=1000, random_state=0) # X = np.stack(df["embeddings"].tolist()) # y = df["genus"].tolist() # X_tsne = tsne.fit_transform(X) # label_encoder = LabelEncoder() # y_encoded = label_encoder.fit_transform(y) # plot = plt.figure(figsize=(6, 5)) # scatter = plt.scatter(X_tsne[:, 0], X_tsne[:, 1], c=y_encoded, cmap="viridis", alpha=0.7) # return plot with gr.Blocks() as demo: # Header section gr.Markdown("# DNA Identifier Tool") gr.Markdown(( "Welcome to Lofi Amazon Beats' DNA Identifier Tool. " "Please enter a DNA sequence and the coordinates at which its sample " "was taken to get started. Click 'I'm feeling lucky' to see use a " "random sequence." )) with gr.Row(): with gr.Column(): inp_dna = gr.Textbox(label="DNA", placeholder="e.g. AACAATGTA... (min 200 and max 660 characters)") with gr.Column(): with gr.Row(): inp_lat = gr.Textbox(label="Latitude", placeholder="e.g. -3.009083") with gr.Row(): inp_lng = gr.Textbox(label="Longitude", placeholder="e.g. -58.68281") with gr.Row(): btn_run = gr.Button("Predict") btn_run.click(fn=preprocess, inputs=[inp_dna, inp_lat, inp_lng]) btn_defaults = gr.Button("I'm feeling lucky") btn_defaults.click(fn=set_default_inputs, outputs=[inp_dna, inp_lat, inp_lng]) with gr.Tab("Genus Prediction"): with gr.Row(): gr.Markdown("Make plot or table for Top 5 species") with gr.Row(): genus_out = gr.Dataframe(headers=["DNA Only Pred Genus", "DNA Only Prob", "DNA & Env Pred Genus", "DNA & Env Prob"]) # btn_run.click(fn=predict_genus, inputs=[inp_dna, inp_lat, inp_lng], outputs=genus_out) with gr.Tab('DNA Embedding Space Visualizer'): gr.Markdown("If the highest genus probability is very low for your DNA sequence, we can still examine the DNA embedding of the sequence in relation to known samples for clues.") with gr.Row() as row: with gr.Column(): gr.Markdown("Plot of your DNA sequence among other known species clusters.") # plot = gr.Plot("") # btn_run.click(fn=tsne_DNA, inputs=[inp_dna, genus_out]) with gr.Column(): gr.Markdown("Plot of the five most common species at your sample coordinate.") demo.launch()