|
import torch |
|
import gradio as gr |
|
import ffmpeg |
|
import numpy as np |
|
import whisper |
|
|
|
MODEL_NAME = "large-v3" |
|
SAMPLE_RATE = 16000 |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model = whisper.load_model(MODEL_NAME).to(device) |
|
|
|
def load_audio(file): |
|
try: |
|
|
|
|
|
out, _ = ( |
|
ffmpeg.input(file, threads=0) |
|
.output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=SAMPLE_RATE) |
|
.run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True) |
|
) |
|
except ffmpeg.Error as e: |
|
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e |
|
|
|
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0 |
|
|
|
def transcribe(audio_file, task): |
|
if audio_file is None: |
|
raise gr.Error("No audio file submitted! Please upload an audio file before submitting your request.") |
|
|
|
try: |
|
|
|
audio = load_audio(audio_file.name) |
|
|
|
|
|
result = model.transcribe(audio, task=task, language="en") |
|
|
|
|
|
output = "" |
|
for segment in result["segments"]: |
|
start_time = segment["start"] |
|
end_time = segment["end"] |
|
text = segment["text"] |
|
output += f"[{format_timestamp(start_time)} -> {format_timestamp(end_time)}] {text}\n" |
|
|
|
return output |
|
|
|
except Exception as e: |
|
raise gr.Error(f"Error processing audio file: {str(e)}") |
|
|
|
def format_timestamp(seconds): |
|
minutes, seconds = divmod(seconds, 60) |
|
hours, minutes = divmod(minutes, 60) |
|
return f"{int(hours):02d}:{int(minutes):02d}:{seconds:.2f}" |
|
|
|
|
|
audio_input = gr.components.File(label="Audio file", file_types=["audio"]) |
|
task_input = gr.components.Radio(["transcribe", "translate"], label="Task", default="transcribe") |
|
output = gr.components.Textbox(label="Transcription with Timestamps") |
|
|
|
demo = gr.Interface( |
|
fn=transcribe, |
|
inputs=[audio_input, task_input], |
|
outputs=output, |
|
title=f"Whisper {MODEL_NAME}: Transcribe Audio with Timestamps", |
|
description=( |
|
f"Transcribe audio files with Whisper {MODEL_NAME}. " |
|
"Upload an audio file and choose whether to transcribe or translate. " |
|
"The output includes timestamps for each transcribed segment." |
|
), |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |