File size: 1,923 Bytes
1d4a237
7303dec
 
 
5f8ce27
7303dec
 
 
 
 
 
 
 
 
 
 
5f8ce27
 
 
 
7303dec
 
5f8ce27
7303dec
 
5f8ce27
7303dec
 
 
 
 
 
 
 
 
5f8ce27
7303dec
 
 
 
 
 
 
 
 
 
5f8ce27
7303dec
 
 
 
 
 
 
 
 
5f8ce27
7303dec
5f8ce27
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
!pip install phi
import os
import streamlit as st
from dotenv import load_dotenv
from phi.agent import Agent
from phi.model.groq import Groq
from phi.tools.duckduckgo import DuckDuckGo
from phi.tools.yfinance import YFinanceTools

# Load environment variables
load_dotenv()

# Retrieve API keys from the environment
deepseek_api_key = os.getenv("GROQ_DEEPSEEK_API_KEY")
qwen_api_key = os.getenv("GROQ_QWEN_API_KEY")

# Streamlit UI setup
st.set_page_config(page_title="AI Agent Hub", layout="wide")
st.title("🤖 AI Agent Hub")

# Debugging API key loading
if not deepseek_api_key or not qwen_api_key:
    st.error("Missing API keys. Ensure they are set in the Hugging Face Secrets.")
    st.stop()

# Define the Web Agent using Groq's QWEN model
web_agent = Agent(
    name="Web Agent",
    model=Groq(id="qwen-2.5-coder-32b", api_key=qwen_api_key),
    tools=[DuckDuckGo()],
    instructions=["Always include sources"],
    show_tool_calls=True,
    markdown=True,
)

# Define the Finance Agent using Groq's DeepSeek model
finance_agent = Agent(
    name="Finance Agent",
    role="Get financial data",
    model=Groq(id="qwen-2.5-coder-32b", api_key=qwen_api_key),
    tools=[YFinanceTools(stock_price=True, analyst_recommendations=True, company_info=True)],
    instructions=["Use tables to display data"],
    show_tool_calls=True,
    markdown=True,
)

# Combine agents into a team
agent_team = Agent(
    model=Groq(id="deepseek-r1-distill-llama-70b", api_key=deepseek_api_key),
    team=[web_agent, finance_agent],
    instructions=["Always include sources", "Use tables to display data"],
    show_tool_calls=True,
    markdown=True,
)

# User input
query = st.text_input("Enter your query:")

if query:
    with st.spinner("Fetching results..."):
        try:
            response = agent_team.respond(query)
            st.write(response)
        except Exception as e:
            st.error(f"Error: {str(e)}")