import os import streamlit as st from dotenv import load_dotenv from phi.agent import Agent from phi.model.groq import Groq from phi.tools.duckduckgo import DuckDuckGo from phi.tools.yfinance import YFinanceTools # Load environment variables load_dotenv() # Retrieve API keys from the environment deepseek_api_key = os.getenv("GROQ_DEEPSEEK_API_KEY") qwen_api_key = os.getenv("GROQ_QWEN_API_KEY") # Debugging API key loading if not deepseek_api_key or not qwen_api_key: raise ValueError("Missing API keys. Check your .env file.") print("DeepSeek API Key Loaded") print("Qwen API Key Loaded") # Define the Web Agent using Groq's QWEN model web_agent = Agent( name="Web Agent", model=Groq(id="qwen-2.5-coder-32b", api_key=qwen_api_key), tools=[DuckDuckGo()], instructions=["Always include sources"], show_tool_calls=True, markdown=True, ) # Define the Finance Agent using Groq's DeepSeek model finance_agent = Agent( name="Finance Agent", role="Get financial data", model=Groq(id="qwen-2.5-coder-32b", api_key=qwen_api_key), tools=[YFinanceTools(stock_price=True, analyst_recommendations=True, company_info=True)], instructions=["Use tables to display data"], show_tool_calls=True, markdown=True, ) # Combine agents into a team agent_team = Agent( model=Groq(id="deepseek-r1-distill-llama-70b", api_key=deepseek_api_key), team=[web_agent, finance_agent], instructions=["Always include sources", "Use tables to display data"], show_tool_calls=True, markdown=True, ) # Debugging agent_team initialization if not agent_team: raise ValueError("Agent team failed to initialize.") print("Agent team initialized successfully") # Streamlit UI st.set_page_config(page_title="AI Chat Assistant", layout="wide") st.title("🤖 AI Chat Assistant") # User input if prompt := st.chat_input("Ask me anything..."): with st.chat_message("user"): st.markdown(prompt) with st.chat_message("assistant"): response_container = st.empty() response_text = "" # Ensure agent_team has a valid method to generate responses if hasattr(agent_team, "respond") and callable(agent_team.respond): try: response_text = web_agent.respond(prompt) # Try this instead response_container.markdown(response_text if response_text else "No response received.") except Exception as e: error_message = f"Error during response: {str(e)}" print(error_message) response_container.markdown(error_message) else: error_message = "Error: Agent does not support valid response methods." print(error_message) response_container.markdown(error_message)