import streamlit as st import pandas as pd import numpy as np import joblib import matplotlib.pyplot as plt # Load the model and columns lr_clf = joblib.load("bengaluru_home_prices_model.joblib") X_columns = pd.read_csv("dora.csv") OHE = pd.read_csv("B5.csv") locations = OHE['location'].tolist() # Non-changeable variables bhk1 = 5 bath1 = 5 def predict_price(location, sqft, bath, bhk): loc_index = np.where(X_columns.columns == location)[0][0] x = np.zeros(len(X_columns.columns)) x[0] = sqft x[1] = bath x[2] = bhk if loc_index >= 0: x[loc_index] = 1 return lr_clf.predict([x])[0] def get_price_predictions(location, sqft, bhk): all_predictions = [] for bhk_val in range(1, bhk+1): predictions = [] for bath in range(1, 6): price_prediction = predict_price(location, sqft, bath, bhk_val) predictions.append(price_prediction) all_predictions.append(predictions) return all_predictions st.title('House Price Prediction') # Sidebar with area and location selection sqft = st.sidebar.slider('Select the area in sq meters:', min_value=500.0, max_value=3000.0, value=500.0) location = st.sidebar.selectbox('Select a location:', locations) bhk = st.sidebar.slider('Select BHK (1-5):', min_value=1, max_value=5) bath = st.sidebar.slider('Select Bathrooms (1-5):', min_value=1, max_value=5) estimated_price = predict_price(location, sqft, bath, bhk) st.write(f"Estimated Price per sqft : ₹ {estimated_price}") # Predict prices for different numbers of BHKs predictions = get_price_predictions(location, sqft, bhk1) # Display a spreadsheet-like table of prices prices_table = pd.DataFrame(predictions, columns=[f"{i+1} BHK" for i in range(bhk1)], index=[f"{i} Bathrooms" for i in range(1, bath1+1)]) st.table(prices_table) # Google Map embedding st.components.v1.html(""" """, height=500) # Plot graphs for each number of BHKs fig, axs = plt.subplots(bhk1, 1, figsize=(10, bhk1*5), sharex=True) bath_values = range(1, 6) colors = ['blue', 'green', 'red', 'purple', 'orange'] # Define different colors for each BHK for i in range(bhk1): axs[i].plot(bath_values, predictions[i], label=f'{i+1} BHK', color=colors[i]) # Use a different color for each BHK axs[i].set_ylabel('Predicted Price per sqft (in ₹)') axs[i].set_title(f'Predicted Price for {i+1} BHK (in ₹)') axs[i].legend(loc='center left', bbox_to_anchor=(1, 0.5)) # Position legend to the right of the graph # Set common x-axis label fig.text(0.5, 0.04, 'Number of Bathrooms', ha='center', va='center') plt.tight_layout(pad=3.0) st.pyplot(fig)