Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
# Sample DataFrame for demonstration | |
data = { | |
'product_code': [1, 2, 3, 4, 5], | |
'label': ['Label1', 'Label2', 'Label3', 'Label4', 'Label1'], | |
'amount': [250, 450, 300, 200, 500] | |
} | |
df = pd.DataFrame(data) | |
# Streamlit App | |
st.title('DataFrame Column Selector') | |
# Display the original DataFrame | |
st.subheader('Original DataFrame') | |
st.write(df) | |
# Column selection for inclusion | |
st.subheader('Select Columns to Include') | |
include_columns = st.multiselect('Select columns to include', options=df.columns, default=df.columns.tolist()) | |
# Column selection for exclusion | |
st.subheader('Select Columns to Exclude') | |
exclude_columns = st.multiselect('Select columns to exclude', options=df.columns, default=[]) | |
# Filter DataFrame to include only selected columns | |
if include_columns: | |
filtered_df = df[include_columns] | |
else: | |
filtered_df = df | |
# Further filter DataFrame to exclude specified rows | |
if exclude_columns: | |
filtered_df = filtered_df[~filtered_df[exclude_columns].apply(lambda x: x.isin(include_columns)).any(axis=1)] | |
# Display the filtered DataFrame | |
st.subheader('Filtered DataFrame') | |
st.write(filtered_df) | |