Lokesh1024 commited on
Commit
b003153
·
verified ·
1 Parent(s): e786096

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -20
app.py CHANGED
@@ -1,28 +1,38 @@
1
  import streamlit as st
2
  import pandas as pd
3
 
4
- # Sample DataFrame for demonstration
5
- data = {
6
- 'product_code': [1, 2, 3, 4, 5],
7
- 'label': ['Label1', 'Label2', 'Label3', 'Label4', 'Label1'],
8
- 'amount': [250, 450, 300, 200, 500]
9
- }
10
- df = pd.DataFrame(data)
11
-
12
  # Streamlit App
13
- st.title('DataFrame Column Selector')
 
 
 
14
 
15
- # Display the original DataFrame
16
- st.subheader('Original DataFrame')
17
- st.write(df)
 
 
 
 
18
 
19
- # Column selection for inclusion
20
- st.subheader('Select Columns to Include')
21
- include_columns = st.multiselect('Select columns to include', options=df.columns, default=df.columns.tolist())
22
 
23
- # Filter DataFrame to include only selected columns
24
- filtered_df = df[include_columns]
 
 
 
25
 
26
- # Display the filtered DataFrame
27
- st.subheader('Filtered DataFrame')
28
- st.write(filtered_df)
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
  import pandas as pd
3
 
 
 
 
 
 
 
 
 
4
  # Streamlit App
5
+ st.title('CSV Column Selector')
6
+
7
+ # File uploader for CSV files
8
+ uploaded_file = st.file_uploader("Upload CSV file", type=["csv"])
9
 
10
+ if uploaded_file is not None:
11
+ # Read the CSV file into a DataFrame
12
+ df = pd.read_csv(uploaded_file)
13
+
14
+ # Display the original DataFrame
15
+ st.subheader('Original DataFrame')
16
+ st.write(df)
17
 
18
+ # Column selection for inclusion
19
+ st.subheader('Select Columns to Include')
20
+ include_columns = st.multiselect('Select columns to include', options=df.columns, default=df.columns.tolist())
21
 
22
+ # Filter DataFrame to include only selected columns
23
+ if include_columns:
24
+ filtered_df = df[include_columns]
25
+ else:
26
+ filtered_df = df
27
 
28
+ # Display the filtered DataFrame
29
+ st.subheader('Filtered DataFrame')
30
+ st.write(filtered_df)
31
+
32
+ # Option to download the filtered DataFrame
33
+ st.download_button(
34
+ label="Download Filtered DataFrame",
35
+ data=filtered_df.to_csv(index=False),
36
+ file_name='filtered_data.csv',
37
+ mime='text/csv'
38
+ )