Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
import tensorflow as tf
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# Load the pre-trained model
|
7 |
+
caption_model = get_caption_model()
|
8 |
+
|
9 |
+
# Load the index lookup dictionary
|
10 |
+
with open('index_lookup.pkl', 'rb') as f:
|
11 |
+
index_lookup = pickle.load(f)
|
12 |
+
|
13 |
+
# Set the maximum decoded sentence length
|
14 |
+
max_decoded_sentence_length = 40
|
15 |
+
|
16 |
+
def generate_caption(img):
|
17 |
+
# Preprocess the image
|
18 |
+
img = tf.expand_dims(img, 0)
|
19 |
+
img_embed = caption_model.cnn_model(img)
|
20 |
+
|
21 |
+
# Pass the image features to the Transformer encoder
|
22 |
+
encoded_img = caption_model.encoder(img_embed, training=False)
|
23 |
+
|
24 |
+
# Generate the caption using the Transformer decoder
|
25 |
+
decoded_caption = "<start> "
|
26 |
+
for i in range(max_decoded_sentence_length):
|
27 |
+
tokenized_caption = vectorization([decoded_caption])[:, :-1]
|
28 |
+
mask = tf.math.not_equal(tokenized_caption, 0)
|
29 |
+
predictions = caption_model.decoder(
|
30 |
+
tokenized_caption, encoded_img, training=False, mask=mask
|
31 |
+
)
|
32 |
+
sampled_token_index = np.argmax(predictions[0, i, :])
|
33 |
+
sampled_token = index_lookup[sampled_token_index]
|
34 |
+
if sampled_token == "<end>":
|
35 |
+
break
|
36 |
+
decoded_caption += " " + sampled_token
|
37 |
+
|
38 |
+
decoded_caption = decoded_caption.replace("<start> ", "")
|
39 |
+
decoded_caption = decoded_caption.replace(" <end>", "").strip()
|
40 |
+
return decoded_caption
|
41 |
+
|
42 |
+
st.title("Image Captioning")
|
43 |
+
|
44 |
+
# Upload an image
|
45 |
+
uploaded_file = st.file_uploader("Choose an image", type=["jpg", "jpeg", "png"])
|
46 |
+
|
47 |
+
if uploaded_file is not None:
|
48 |
+
# Display the uploaded image
|
49 |
+
image = Image.open(uploaded_file)
|
50 |
+
st.image(image, caption='Uploaded Image', use_column_width=True)
|
51 |
+
|
52 |
+
# Generate the caption
|
53 |
+
img = tf.keras.preprocessing.image.img_to_array(image)
|
54 |
+
img = tf.image.resize(img, (299, 299))
|
55 |
+
caption = generate_caption(img)
|
56 |
+
|
57 |
+
# Display the generated caption
|
58 |
+
st.write("Generated Caption:", caption)
|